forked from Alsan/Post_finder
84 lines
2.9 KiB
Python
84 lines
2.9 KiB
Python
import pandas as pd
|
|
from flask import Flask, request, render_template_string
|
|
|
|
app = Flask(__name__)
|
|
|
|
@app.route('/')
|
|
def index():
|
|
return '''
|
|
<h2>Upload Excel File</h2>
|
|
<form action="/upload" method="post" enctype="multipart/form-data">
|
|
<input type="file" name="file">
|
|
<br><br>
|
|
<input type="text" name="tracking_no" placeholder="Enter Tracking No">
|
|
<br><br>
|
|
<input type="submit" value="Upload">
|
|
</form>
|
|
'''
|
|
|
|
@app.route('/upload', methods=['POST'])
|
|
def upload_file():
|
|
if 'file' not in request.files or 'tracking_no' not in request.form:
|
|
return "No file or tracking number provided.", 400
|
|
|
|
file = request.files['file']
|
|
tracking_no = request.form['tracking_no']
|
|
|
|
try:
|
|
# Load the CSV with no header since we need to manually locate key data points
|
|
df = pd.read_csv(file, header=None, dtype=str)
|
|
|
|
# Find the "Mail Bag No:" label and retrieve its value from column C (index 2)
|
|
mail_bag_no = None
|
|
for i, row in df.iterrows():
|
|
if row[0] == "Mail Bag No:":
|
|
mail_bag_no = row[2]
|
|
break
|
|
|
|
# If "Mail Bag No:" is not found, set it to "N/A"
|
|
if mail_bag_no is None:
|
|
mail_bag_no = "N/A"
|
|
|
|
# Locate header row by looking for "Tracking No" in any row
|
|
header_row_index = None
|
|
for i, row in df.iterrows():
|
|
if row.str.contains("Tracking No", case=False, na=False).any():
|
|
header_row_index = i
|
|
break
|
|
|
|
if header_row_index is None:
|
|
return "'Tracking No' column not found in the CSV file."
|
|
|
|
# Reload the CSV with the identified header row
|
|
file.seek(0) # Reset file pointer to start of file for re-read
|
|
df = pd.read_csv(file, skiprows=header_row_index)
|
|
|
|
except Exception as e:
|
|
return f"Error reading CSV file: {e}", 500
|
|
|
|
# Confirm the 'Tracking No' column exists in this adjusted DataFrame
|
|
if 'Tracking No' not in df.columns:
|
|
return f"'Tracking No' column not found. Available columns after adjustment: {', '.join(df.columns)}"
|
|
|
|
# Filter the data based on the tracking number
|
|
filtered_data = df[df['Tracking No'] == tracking_no]
|
|
|
|
if filtered_data.empty:
|
|
return f"No data found for Tracking No: {tracking_no}"
|
|
|
|
# Collect data for each matching entry
|
|
result_html = "<h2>Tracking Information</h2>"
|
|
for _, row in filtered_data.iterrows():
|
|
hash_column = row.get('#', "N/A")
|
|
result_html += f"""
|
|
<p><strong>Tracking No:</strong> {row['Tracking No']}</p>
|
|
<p><strong>Mail Bag No:</strong> {mail_bag_no}</p>
|
|
<p><strong>#:</strong> {hash_column}</p>
|
|
<hr>
|
|
"""
|
|
|
|
return render_template_string(result_html)
|
|
|
|
if __name__ == '__main__':
|
|
app.run(debug=True, port=5000, host='0.0.0.0')
|