This commit is contained in:
2024-12-04 13:35:57 +05:00
parent d346bf4b2a
commit 73ce681a55
7059 changed files with 1196501 additions and 0 deletions

View File

@ -0,0 +1,15 @@
import numpy as np
import pandas as pd
object_pyarrow_numpy = ("object", "string[pyarrow_numpy]")
def _convert_na_value(ser, expected):
if ser.dtype != object:
if ser.dtype.storage == "pyarrow_numpy":
expected = expected.fillna(np.nan)
else:
# GH#18463
expected = expected.fillna(pd.NA)
return expected

View File

@ -0,0 +1,132 @@
import pytest
from pandas import Series
from pandas.core.strings.accessor import StringMethods
_any_string_method = [
("cat", (), {"sep": ","}),
("cat", (Series(list("zyx")),), {"sep": ",", "join": "left"}),
("center", (10,), {}),
("contains", ("a",), {}),
("count", ("a",), {}),
("decode", ("UTF-8",), {}),
("encode", ("UTF-8",), {}),
("endswith", ("a",), {}),
("endswith", ((),), {}),
("endswith", (("a",),), {}),
("endswith", (("a", "b"),), {}),
("endswith", (("a", "MISSING"),), {}),
("endswith", ("a",), {"na": True}),
("endswith", ("a",), {"na": False}),
("extract", ("([a-z]*)",), {"expand": False}),
("extract", ("([a-z]*)",), {"expand": True}),
("extractall", ("([a-z]*)",), {}),
("find", ("a",), {}),
("findall", ("a",), {}),
("get", (0,), {}),
# because "index" (and "rindex") fail intentionally
# if the string is not found, search only for empty string
("index", ("",), {}),
("join", (",",), {}),
("ljust", (10,), {}),
("match", ("a",), {}),
("fullmatch", ("a",), {}),
("normalize", ("NFC",), {}),
("pad", (10,), {}),
("partition", (" ",), {"expand": False}),
("partition", (" ",), {"expand": True}),
("repeat", (3,), {}),
("replace", ("a", "z"), {}),
("rfind", ("a",), {}),
("rindex", ("",), {}),
("rjust", (10,), {}),
("rpartition", (" ",), {"expand": False}),
("rpartition", (" ",), {"expand": True}),
("slice", (0, 1), {}),
("slice_replace", (0, 1, "z"), {}),
("split", (" ",), {"expand": False}),
("split", (" ",), {"expand": True}),
("startswith", ("a",), {}),
("startswith", (("a",),), {}),
("startswith", (("a", "b"),), {}),
("startswith", (("a", "MISSING"),), {}),
("startswith", ((),), {}),
("startswith", ("a",), {"na": True}),
("startswith", ("a",), {"na": False}),
("removeprefix", ("a",), {}),
("removesuffix", ("a",), {}),
# translating unicode points of "a" to "d"
("translate", ({97: 100},), {}),
("wrap", (2,), {}),
("zfill", (10,), {}),
] + list(
zip(
[
# methods without positional arguments: zip with empty tuple and empty dict
"capitalize",
"cat",
"get_dummies",
"isalnum",
"isalpha",
"isdecimal",
"isdigit",
"islower",
"isnumeric",
"isspace",
"istitle",
"isupper",
"len",
"lower",
"lstrip",
"partition",
"rpartition",
"rsplit",
"rstrip",
"slice",
"slice_replace",
"split",
"strip",
"swapcase",
"title",
"upper",
"casefold",
],
[()] * 100,
[{}] * 100,
)
)
ids, _, _ = zip(*_any_string_method) # use method name as fixture-id
missing_methods = {f for f in dir(StringMethods) if not f.startswith("_")} - set(ids)
# test that the above list captures all methods of StringMethods
assert not missing_methods
@pytest.fixture(params=_any_string_method, ids=ids)
def any_string_method(request):
"""
Fixture for all public methods of `StringMethods`
This fixture returns a tuple of the method name and sample arguments
necessary to call the method.
Returns
-------
method_name : str
The name of the method in `StringMethods`
args : tuple
Sample values for the positional arguments
kwargs : dict
Sample values for the keyword arguments
Examples
--------
>>> def test_something(any_string_method):
... s = Series(['a', 'b', np.nan, 'd'])
...
... method_name, args, kwargs = any_string_method
... method = getattr(s.str, method_name)
... # will not raise
... method(*args, **kwargs)
"""
return request.param

View File

@ -0,0 +1,198 @@
import numpy as np
import pytest
from pandas import (
CategoricalDtype,
DataFrame,
Index,
MultiIndex,
Series,
_testing as tm,
option_context,
)
from pandas.core.strings.accessor import StringMethods
# subset of the full set from pandas/conftest.py
_any_allowed_skipna_inferred_dtype = [
("string", ["a", np.nan, "c"]),
("bytes", [b"a", np.nan, b"c"]),
("empty", [np.nan, np.nan, np.nan]),
("empty", []),
("mixed-integer", ["a", np.nan, 2]),
]
ids, _ = zip(*_any_allowed_skipna_inferred_dtype) # use inferred type as id
@pytest.fixture(params=_any_allowed_skipna_inferred_dtype, ids=ids)
def any_allowed_skipna_inferred_dtype(request):
"""
Fixture for all (inferred) dtypes allowed in StringMethods.__init__
The covered (inferred) types are:
* 'string'
* 'empty'
* 'bytes'
* 'mixed'
* 'mixed-integer'
Returns
-------
inferred_dtype : str
The string for the inferred dtype from _libs.lib.infer_dtype
values : np.ndarray
An array of object dtype that will be inferred to have
`inferred_dtype`
Examples
--------
>>> from pandas._libs import lib
>>>
>>> def test_something(any_allowed_skipna_inferred_dtype):
... inferred_dtype, values = any_allowed_skipna_inferred_dtype
... # will pass
... assert lib.infer_dtype(values, skipna=True) == inferred_dtype
...
... # constructor for .str-accessor will also pass
... Series(values).str
"""
inferred_dtype, values = request.param
values = np.array(values, dtype=object) # object dtype to avoid casting
# correctness of inference tested in tests/dtypes/test_inference.py
return inferred_dtype, values
def test_api(any_string_dtype):
# GH 6106, GH 9322
assert Series.str is StringMethods
assert isinstance(Series([""], dtype=any_string_dtype).str, StringMethods)
def test_api_mi_raises():
# GH 23679
mi = MultiIndex.from_arrays([["a", "b", "c"]])
msg = "Can only use .str accessor with Index, not MultiIndex"
with pytest.raises(AttributeError, match=msg):
mi.str
assert not hasattr(mi, "str")
@pytest.mark.parametrize("dtype", [object, "category"])
def test_api_per_dtype(index_or_series, dtype, any_skipna_inferred_dtype):
# one instance of parametrized fixture
box = index_or_series
inferred_dtype, values = any_skipna_inferred_dtype
t = box(values, dtype=dtype) # explicit dtype to avoid casting
types_passing_constructor = [
"string",
"unicode",
"empty",
"bytes",
"mixed",
"mixed-integer",
]
if inferred_dtype in types_passing_constructor:
# GH 6106
assert isinstance(t.str, StringMethods)
else:
# GH 9184, GH 23011, GH 23163
msg = "Can only use .str accessor with string values.*"
with pytest.raises(AttributeError, match=msg):
t.str
assert not hasattr(t, "str")
@pytest.mark.parametrize("dtype", [object, "category"])
def test_api_per_method(
index_or_series,
dtype,
any_allowed_skipna_inferred_dtype,
any_string_method,
request,
):
# this test does not check correctness of the different methods,
# just that the methods work on the specified (inferred) dtypes,
# and raise on all others
box = index_or_series
# one instance of each parametrized fixture
inferred_dtype, values = any_allowed_skipna_inferred_dtype
method_name, args, kwargs = any_string_method
reason = None
if box is Index and values.size == 0:
if method_name in ["partition", "rpartition"] and kwargs.get("expand", True):
raises = TypeError
reason = "Method cannot deal with empty Index"
elif method_name == "split" and kwargs.get("expand", None):
raises = TypeError
reason = "Split fails on empty Series when expand=True"
elif method_name == "get_dummies":
raises = ValueError
reason = "Need to fortify get_dummies corner cases"
elif (
box is Index
and inferred_dtype == "empty"
and dtype == object
and method_name == "get_dummies"
):
raises = ValueError
reason = "Need to fortify get_dummies corner cases"
if reason is not None:
mark = pytest.mark.xfail(raises=raises, reason=reason)
request.applymarker(mark)
t = box(values, dtype=dtype) # explicit dtype to avoid casting
method = getattr(t.str, method_name)
bytes_allowed = method_name in ["decode", "get", "len", "slice"]
# as of v0.23.4, all methods except 'cat' are very lenient with the
# allowed data types, just returning NaN for entries that error.
# This could be changed with an 'errors'-kwarg to the `str`-accessor,
# see discussion in GH 13877
mixed_allowed = method_name not in ["cat"]
allowed_types = (
["string", "unicode", "empty"]
+ ["bytes"] * bytes_allowed
+ ["mixed", "mixed-integer"] * mixed_allowed
)
if inferred_dtype in allowed_types:
# xref GH 23555, GH 23556
with option_context("future.no_silent_downcasting", True):
method(*args, **kwargs) # works!
else:
# GH 23011, GH 23163
msg = (
f"Cannot use .str.{method_name} with values of "
f"inferred dtype {repr(inferred_dtype)}."
)
with pytest.raises(TypeError, match=msg):
method(*args, **kwargs)
def test_api_for_categorical(any_string_method, any_string_dtype):
# https://github.com/pandas-dev/pandas/issues/10661
s = Series(list("aabb"), dtype=any_string_dtype)
s = s + " " + s
c = s.astype("category")
c = c.astype(CategoricalDtype(c.dtype.categories.astype("object")))
assert isinstance(c.str, StringMethods)
method_name, args, kwargs = any_string_method
result = getattr(c.str, method_name)(*args, **kwargs)
expected = getattr(s.astype("object").str, method_name)(*args, **kwargs)
if isinstance(result, DataFrame):
tm.assert_frame_equal(result, expected)
elif isinstance(result, Series):
tm.assert_series_equal(result, expected)
else:
# str.cat(others=None) returns string, for example
assert result == expected

View File

@ -0,0 +1,427 @@
from datetime import datetime
import operator
import numpy as np
import pytest
from pandas import (
Series,
_testing as tm,
)
def test_title(any_string_dtype):
s = Series(["FOO", "BAR", np.nan, "Blah", "blurg"], dtype=any_string_dtype)
result = s.str.title()
expected = Series(["Foo", "Bar", np.nan, "Blah", "Blurg"], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
def test_title_mixed_object():
s = Series(["FOO", np.nan, "bar", True, datetime.today(), "blah", None, 1, 2.0])
result = s.str.title()
expected = Series(
["Foo", np.nan, "Bar", np.nan, np.nan, "Blah", None, np.nan, np.nan],
dtype=object,
)
tm.assert_almost_equal(result, expected)
def test_lower_upper(any_string_dtype):
s = Series(["om", np.nan, "nom", "nom"], dtype=any_string_dtype)
result = s.str.upper()
expected = Series(["OM", np.nan, "NOM", "NOM"], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
result = result.str.lower()
tm.assert_series_equal(result, s)
def test_lower_upper_mixed_object():
s = Series(["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0])
result = s.str.upper()
expected = Series(
["A", np.nan, "B", np.nan, np.nan, "FOO", None, np.nan, np.nan], dtype=object
)
tm.assert_series_equal(result, expected)
result = s.str.lower()
expected = Series(
["a", np.nan, "b", np.nan, np.nan, "foo", None, np.nan, np.nan], dtype=object
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"data, expected",
[
(
["FOO", "BAR", np.nan, "Blah", "blurg"],
["Foo", "Bar", np.nan, "Blah", "Blurg"],
),
(["a", "b", "c"], ["A", "B", "C"]),
(["a b", "a bc. de"], ["A b", "A bc. de"]),
],
)
def test_capitalize(data, expected, any_string_dtype):
s = Series(data, dtype=any_string_dtype)
result = s.str.capitalize()
expected = Series(expected, dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
def test_capitalize_mixed_object():
s = Series(["FOO", np.nan, "bar", True, datetime.today(), "blah", None, 1, 2.0])
result = s.str.capitalize()
expected = Series(
["Foo", np.nan, "Bar", np.nan, np.nan, "Blah", None, np.nan, np.nan],
dtype=object,
)
tm.assert_series_equal(result, expected)
def test_swapcase(any_string_dtype):
s = Series(["FOO", "BAR", np.nan, "Blah", "blurg"], dtype=any_string_dtype)
result = s.str.swapcase()
expected = Series(["foo", "bar", np.nan, "bLAH", "BLURG"], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
def test_swapcase_mixed_object():
s = Series(["FOO", np.nan, "bar", True, datetime.today(), "Blah", None, 1, 2.0])
result = s.str.swapcase()
expected = Series(
["foo", np.nan, "BAR", np.nan, np.nan, "bLAH", None, np.nan, np.nan],
dtype=object,
)
tm.assert_series_equal(result, expected)
def test_casefold():
# GH25405
expected = Series(["ss", np.nan, "case", "ssd"])
s = Series(["ß", np.nan, "case", "ßd"])
result = s.str.casefold()
tm.assert_series_equal(result, expected)
def test_casemethods(any_string_dtype):
values = ["aaa", "bbb", "CCC", "Dddd", "eEEE"]
s = Series(values, dtype=any_string_dtype)
assert s.str.lower().tolist() == [v.lower() for v in values]
assert s.str.upper().tolist() == [v.upper() for v in values]
assert s.str.title().tolist() == [v.title() for v in values]
assert s.str.capitalize().tolist() == [v.capitalize() for v in values]
assert s.str.swapcase().tolist() == [v.swapcase() for v in values]
def test_pad(any_string_dtype):
s = Series(["a", "b", np.nan, "c", np.nan, "eeeeee"], dtype=any_string_dtype)
result = s.str.pad(5, side="left")
expected = Series(
[" a", " b", np.nan, " c", np.nan, "eeeeee"], dtype=any_string_dtype
)
tm.assert_series_equal(result, expected)
result = s.str.pad(5, side="right")
expected = Series(
["a ", "b ", np.nan, "c ", np.nan, "eeeeee"], dtype=any_string_dtype
)
tm.assert_series_equal(result, expected)
result = s.str.pad(5, side="both")
expected = Series(
[" a ", " b ", np.nan, " c ", np.nan, "eeeeee"], dtype=any_string_dtype
)
tm.assert_series_equal(result, expected)
def test_pad_mixed_object():
s = Series(["a", np.nan, "b", True, datetime.today(), "ee", None, 1, 2.0])
result = s.str.pad(5, side="left")
expected = Series(
[" a", np.nan, " b", np.nan, np.nan, " ee", None, np.nan, np.nan],
dtype=object,
)
tm.assert_series_equal(result, expected)
result = s.str.pad(5, side="right")
expected = Series(
["a ", np.nan, "b ", np.nan, np.nan, "ee ", None, np.nan, np.nan],
dtype=object,
)
tm.assert_series_equal(result, expected)
result = s.str.pad(5, side="both")
expected = Series(
[" a ", np.nan, " b ", np.nan, np.nan, " ee ", None, np.nan, np.nan],
dtype=object,
)
tm.assert_series_equal(result, expected)
def test_pad_fillchar(any_string_dtype):
s = Series(["a", "b", np.nan, "c", np.nan, "eeeeee"], dtype=any_string_dtype)
result = s.str.pad(5, side="left", fillchar="X")
expected = Series(
["XXXXa", "XXXXb", np.nan, "XXXXc", np.nan, "eeeeee"], dtype=any_string_dtype
)
tm.assert_series_equal(result, expected)
result = s.str.pad(5, side="right", fillchar="X")
expected = Series(
["aXXXX", "bXXXX", np.nan, "cXXXX", np.nan, "eeeeee"], dtype=any_string_dtype
)
tm.assert_series_equal(result, expected)
result = s.str.pad(5, side="both", fillchar="X")
expected = Series(
["XXaXX", "XXbXX", np.nan, "XXcXX", np.nan, "eeeeee"], dtype=any_string_dtype
)
tm.assert_series_equal(result, expected)
def test_pad_fillchar_bad_arg_raises(any_string_dtype):
s = Series(["a", "b", np.nan, "c", np.nan, "eeeeee"], dtype=any_string_dtype)
msg = "fillchar must be a character, not str"
with pytest.raises(TypeError, match=msg):
s.str.pad(5, fillchar="XY")
msg = "fillchar must be a character, not int"
with pytest.raises(TypeError, match=msg):
s.str.pad(5, fillchar=5)
@pytest.mark.parametrize("method_name", ["center", "ljust", "rjust", "zfill", "pad"])
def test_pad_width_bad_arg_raises(method_name, any_string_dtype):
# see gh-13598
s = Series(["1", "22", "a", "bb"], dtype=any_string_dtype)
op = operator.methodcaller(method_name, "f")
msg = "width must be of integer type, not str"
with pytest.raises(TypeError, match=msg):
op(s.str)
def test_center_ljust_rjust(any_string_dtype):
s = Series(["a", "b", np.nan, "c", np.nan, "eeeeee"], dtype=any_string_dtype)
result = s.str.center(5)
expected = Series(
[" a ", " b ", np.nan, " c ", np.nan, "eeeeee"], dtype=any_string_dtype
)
tm.assert_series_equal(result, expected)
result = s.str.ljust(5)
expected = Series(
["a ", "b ", np.nan, "c ", np.nan, "eeeeee"], dtype=any_string_dtype
)
tm.assert_series_equal(result, expected)
result = s.str.rjust(5)
expected = Series(
[" a", " b", np.nan, " c", np.nan, "eeeeee"], dtype=any_string_dtype
)
tm.assert_series_equal(result, expected)
def test_center_ljust_rjust_mixed_object():
s = Series(["a", np.nan, "b", True, datetime.today(), "c", "eee", None, 1, 2.0])
result = s.str.center(5)
expected = Series(
[
" a ",
np.nan,
" b ",
np.nan,
np.nan,
" c ",
" eee ",
None,
np.nan,
np.nan,
],
dtype=object,
)
tm.assert_series_equal(result, expected)
result = s.str.ljust(5)
expected = Series(
[
"a ",
np.nan,
"b ",
np.nan,
np.nan,
"c ",
"eee ",
None,
np.nan,
np.nan,
],
dtype=object,
)
tm.assert_series_equal(result, expected)
result = s.str.rjust(5)
expected = Series(
[
" a",
np.nan,
" b",
np.nan,
np.nan,
" c",
" eee",
None,
np.nan,
np.nan,
],
dtype=object,
)
tm.assert_series_equal(result, expected)
def test_center_ljust_rjust_fillchar(any_string_dtype):
if any_string_dtype == "string[pyarrow_numpy]":
pytest.skip(
"Arrow logic is different, "
"see https://github.com/pandas-dev/pandas/pull/54533/files#r1299808126",
)
s = Series(["a", "bb", "cccc", "ddddd", "eeeeee"], dtype=any_string_dtype)
result = s.str.center(5, fillchar="X")
expected = Series(
["XXaXX", "XXbbX", "Xcccc", "ddddd", "eeeeee"], dtype=any_string_dtype
)
tm.assert_series_equal(result, expected)
expected = np.array([v.center(5, "X") for v in np.array(s)], dtype=np.object_)
tm.assert_numpy_array_equal(np.array(result, dtype=np.object_), expected)
result = s.str.ljust(5, fillchar="X")
expected = Series(
["aXXXX", "bbXXX", "ccccX", "ddddd", "eeeeee"], dtype=any_string_dtype
)
tm.assert_series_equal(result, expected)
expected = np.array([v.ljust(5, "X") for v in np.array(s)], dtype=np.object_)
tm.assert_numpy_array_equal(np.array(result, dtype=np.object_), expected)
result = s.str.rjust(5, fillchar="X")
expected = Series(
["XXXXa", "XXXbb", "Xcccc", "ddddd", "eeeeee"], dtype=any_string_dtype
)
tm.assert_series_equal(result, expected)
expected = np.array([v.rjust(5, "X") for v in np.array(s)], dtype=np.object_)
tm.assert_numpy_array_equal(np.array(result, dtype=np.object_), expected)
def test_center_ljust_rjust_fillchar_bad_arg_raises(any_string_dtype):
s = Series(["a", "bb", "cccc", "ddddd", "eeeeee"], dtype=any_string_dtype)
# If fillchar is not a character, normal str raises TypeError
# 'aaa'.ljust(5, 'XY')
# TypeError: must be char, not str
template = "fillchar must be a character, not {dtype}"
with pytest.raises(TypeError, match=template.format(dtype="str")):
s.str.center(5, fillchar="XY")
with pytest.raises(TypeError, match=template.format(dtype="str")):
s.str.ljust(5, fillchar="XY")
with pytest.raises(TypeError, match=template.format(dtype="str")):
s.str.rjust(5, fillchar="XY")
with pytest.raises(TypeError, match=template.format(dtype="int")):
s.str.center(5, fillchar=1)
with pytest.raises(TypeError, match=template.format(dtype="int")):
s.str.ljust(5, fillchar=1)
with pytest.raises(TypeError, match=template.format(dtype="int")):
s.str.rjust(5, fillchar=1)
def test_zfill(any_string_dtype):
s = Series(["1", "22", "aaa", "333", "45678"], dtype=any_string_dtype)
result = s.str.zfill(5)
expected = Series(
["00001", "00022", "00aaa", "00333", "45678"], dtype=any_string_dtype
)
tm.assert_series_equal(result, expected)
expected = np.array([v.zfill(5) for v in np.array(s)], dtype=np.object_)
tm.assert_numpy_array_equal(np.array(result, dtype=np.object_), expected)
result = s.str.zfill(3)
expected = Series(["001", "022", "aaa", "333", "45678"], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
expected = np.array([v.zfill(3) for v in np.array(s)], dtype=np.object_)
tm.assert_numpy_array_equal(np.array(result, dtype=np.object_), expected)
s = Series(["1", np.nan, "aaa", np.nan, "45678"], dtype=any_string_dtype)
result = s.str.zfill(5)
expected = Series(
["00001", np.nan, "00aaa", np.nan, "45678"], dtype=any_string_dtype
)
tm.assert_series_equal(result, expected)
def test_wrap(any_string_dtype):
# test values are: two words less than width, two words equal to width,
# two words greater than width, one word less than width, one word
# equal to width, one word greater than width, multiple tokens with
# trailing whitespace equal to width
s = Series(
[
"hello world",
"hello world!",
"hello world!!",
"abcdefabcde",
"abcdefabcdef",
"abcdefabcdefa",
"ab ab ab ab ",
"ab ab ab ab a",
"\t",
],
dtype=any_string_dtype,
)
# expected values
expected = Series(
[
"hello world",
"hello world!",
"hello\nworld!!",
"abcdefabcde",
"abcdefabcdef",
"abcdefabcdef\na",
"ab ab ab ab",
"ab ab ab ab\na",
"",
],
dtype=any_string_dtype,
)
result = s.str.wrap(12, break_long_words=True)
tm.assert_series_equal(result, expected)
def test_wrap_unicode(any_string_dtype):
# test with pre and post whitespace (non-unicode), NaN, and non-ascii Unicode
s = Series(
[" pre ", np.nan, "\xac\u20ac\U00008000 abadcafe"], dtype=any_string_dtype
)
expected = Series(
[" pre", np.nan, "\xac\u20ac\U00008000 ab\nadcafe"], dtype=any_string_dtype
)
result = s.str.wrap(6)
tm.assert_series_equal(result, expected)

View File

@ -0,0 +1,427 @@
import re
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
_testing as tm,
concat,
option_context,
)
@pytest.mark.parametrize("other", [None, Series, Index])
def test_str_cat_name(index_or_series, other):
# GH 21053
box = index_or_series
values = ["a", "b"]
if other:
other = other(values)
else:
other = values
result = box(values, name="name").str.cat(other, sep=",")
assert result.name == "name"
@pytest.mark.parametrize(
"infer_string", [False, pytest.param(True, marks=td.skip_if_no("pyarrow"))]
)
def test_str_cat(index_or_series, infer_string):
with option_context("future.infer_string", infer_string):
box = index_or_series
# test_cat above tests "str_cat" from ndarray;
# here testing "str.cat" from Series/Index to ndarray/list
s = box(["a", "a", "b", "b", "c", np.nan])
# single array
result = s.str.cat()
expected = "aabbc"
assert result == expected
result = s.str.cat(na_rep="-")
expected = "aabbc-"
assert result == expected
result = s.str.cat(sep="_", na_rep="NA")
expected = "a_a_b_b_c_NA"
assert result == expected
t = np.array(["a", np.nan, "b", "d", "foo", np.nan], dtype=object)
expected = box(["aa", "a-", "bb", "bd", "cfoo", "--"])
# Series/Index with array
result = s.str.cat(t, na_rep="-")
tm.assert_equal(result, expected)
# Series/Index with list
result = s.str.cat(list(t), na_rep="-")
tm.assert_equal(result, expected)
# errors for incorrect lengths
rgx = r"If `others` contains arrays or lists \(or other list-likes.*"
z = Series(["1", "2", "3"])
with pytest.raises(ValueError, match=rgx):
s.str.cat(z.values)
with pytest.raises(ValueError, match=rgx):
s.str.cat(list(z))
def test_str_cat_raises_intuitive_error(index_or_series):
# GH 11334
box = index_or_series
s = box(["a", "b", "c", "d"])
message = "Did you mean to supply a `sep` keyword?"
with pytest.raises(ValueError, match=message):
s.str.cat("|")
with pytest.raises(ValueError, match=message):
s.str.cat(" ")
@pytest.mark.parametrize(
"infer_string", [False, pytest.param(True, marks=td.skip_if_no("pyarrow"))]
)
@pytest.mark.parametrize("sep", ["", None])
@pytest.mark.parametrize("dtype_target", ["object", "category"])
@pytest.mark.parametrize("dtype_caller", ["object", "category"])
def test_str_cat_categorical(
index_or_series, dtype_caller, dtype_target, sep, infer_string
):
box = index_or_series
with option_context("future.infer_string", infer_string):
s = Index(["a", "a", "b", "a"], dtype=dtype_caller)
s = s if box == Index else Series(s, index=s, dtype=s.dtype)
t = Index(["b", "a", "b", "c"], dtype=dtype_target)
expected = Index(
["ab", "aa", "bb", "ac"], dtype=object if dtype_caller == "object" else None
)
expected = (
expected
if box == Index
else Series(
expected, index=Index(s, dtype=dtype_caller), dtype=expected.dtype
)
)
# Series/Index with unaligned Index -> t.values
result = s.str.cat(t.values, sep=sep)
tm.assert_equal(result, expected)
# Series/Index with Series having matching Index
t = Series(t.values, index=Index(s, dtype=dtype_caller))
result = s.str.cat(t, sep=sep)
tm.assert_equal(result, expected)
# Series/Index with Series.values
result = s.str.cat(t.values, sep=sep)
tm.assert_equal(result, expected)
# Series/Index with Series having different Index
t = Series(t.values, index=t.values)
expected = Index(
["aa", "aa", "bb", "bb", "aa"],
dtype=object if dtype_caller == "object" else None,
)
dtype = object if dtype_caller == "object" else s.dtype.categories.dtype
expected = (
expected
if box == Index
else Series(
expected,
index=Index(expected.str[:1], dtype=dtype),
dtype=expected.dtype,
)
)
result = s.str.cat(t, sep=sep)
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"data",
[[1, 2, 3], [0.1, 0.2, 0.3], [1, 2, "b"]],
ids=["integers", "floats", "mixed"],
)
# without dtype=object, np.array would cast [1, 2, 'b'] to ['1', '2', 'b']
@pytest.mark.parametrize(
"box",
[Series, Index, list, lambda x: np.array(x, dtype=object)],
ids=["Series", "Index", "list", "np.array"],
)
def test_str_cat_wrong_dtype_raises(box, data):
# GH 22722
s = Series(["a", "b", "c"])
t = box(data)
msg = "Concatenation requires list-likes containing only strings.*"
with pytest.raises(TypeError, match=msg):
# need to use outer and na_rep, as otherwise Index would not raise
s.str.cat(t, join="outer", na_rep="-")
def test_str_cat_mixed_inputs(index_or_series):
box = index_or_series
s = Index(["a", "b", "c", "d"])
s = s if box == Index else Series(s, index=s)
t = Series(["A", "B", "C", "D"], index=s.values)
d = concat([t, Series(s, index=s)], axis=1)
expected = Index(["aAa", "bBb", "cCc", "dDd"])
expected = expected if box == Index else Series(expected.values, index=s.values)
# Series/Index with DataFrame
result = s.str.cat(d)
tm.assert_equal(result, expected)
# Series/Index with two-dimensional ndarray
result = s.str.cat(d.values)
tm.assert_equal(result, expected)
# Series/Index with list of Series
result = s.str.cat([t, s])
tm.assert_equal(result, expected)
# Series/Index with mixed list of Series/array
result = s.str.cat([t, s.values])
tm.assert_equal(result, expected)
# Series/Index with list of Series; different indexes
t.index = ["b", "c", "d", "a"]
expected = box(["aDa", "bAb", "cBc", "dCd"])
expected = expected if box == Index else Series(expected.values, index=s.values)
result = s.str.cat([t, s])
tm.assert_equal(result, expected)
# Series/Index with mixed list; different index
result = s.str.cat([t, s.values])
tm.assert_equal(result, expected)
# Series/Index with DataFrame; different indexes
d.index = ["b", "c", "d", "a"]
expected = box(["aDd", "bAa", "cBb", "dCc"])
expected = expected if box == Index else Series(expected.values, index=s.values)
result = s.str.cat(d)
tm.assert_equal(result, expected)
# errors for incorrect lengths
rgx = r"If `others` contains arrays or lists \(or other list-likes.*"
z = Series(["1", "2", "3"])
e = concat([z, z], axis=1)
# two-dimensional ndarray
with pytest.raises(ValueError, match=rgx):
s.str.cat(e.values)
# list of list-likes
with pytest.raises(ValueError, match=rgx):
s.str.cat([z.values, s.values])
# mixed list of Series/list-like
with pytest.raises(ValueError, match=rgx):
s.str.cat([z.values, s])
# errors for incorrect arguments in list-like
rgx = "others must be Series, Index, DataFrame,.*"
# make sure None/NaN do not crash checks in _get_series_list
u = Series(["a", np.nan, "c", None])
# mix of string and Series
with pytest.raises(TypeError, match=rgx):
s.str.cat([u, "u"])
# DataFrame in list
with pytest.raises(TypeError, match=rgx):
s.str.cat([u, d])
# 2-dim ndarray in list
with pytest.raises(TypeError, match=rgx):
s.str.cat([u, d.values])
# nested lists
with pytest.raises(TypeError, match=rgx):
s.str.cat([u, [u, d]])
# forbidden input type: set
# GH 23009
with pytest.raises(TypeError, match=rgx):
s.str.cat(set(u))
# forbidden input type: set in list
# GH 23009
with pytest.raises(TypeError, match=rgx):
s.str.cat([u, set(u)])
# other forbidden input type, e.g. int
with pytest.raises(TypeError, match=rgx):
s.str.cat(1)
# nested list-likes
with pytest.raises(TypeError, match=rgx):
s.str.cat(iter([t.values, list(s)]))
@pytest.mark.parametrize("join", ["left", "outer", "inner", "right"])
def test_str_cat_align_indexed(index_or_series, join):
# https://github.com/pandas-dev/pandas/issues/18657
box = index_or_series
s = Series(["a", "b", "c", "d"], index=["a", "b", "c", "d"])
t = Series(["D", "A", "E", "B"], index=["d", "a", "e", "b"])
sa, ta = s.align(t, join=join)
# result after manual alignment of inputs
expected = sa.str.cat(ta, na_rep="-")
if box == Index:
s = Index(s)
sa = Index(sa)
expected = Index(expected)
result = s.str.cat(t, join=join, na_rep="-")
tm.assert_equal(result, expected)
@pytest.mark.parametrize("join", ["left", "outer", "inner", "right"])
def test_str_cat_align_mixed_inputs(join):
s = Series(["a", "b", "c", "d"])
t = Series(["d", "a", "e", "b"], index=[3, 0, 4, 1])
d = concat([t, t], axis=1)
expected_outer = Series(["aaa", "bbb", "c--", "ddd", "-ee"])
expected = expected_outer.loc[s.index.join(t.index, how=join)]
# list of Series
result = s.str.cat([t, t], join=join, na_rep="-")
tm.assert_series_equal(result, expected)
# DataFrame
result = s.str.cat(d, join=join, na_rep="-")
tm.assert_series_equal(result, expected)
# mixed list of indexed/unindexed
u = np.array(["A", "B", "C", "D"])
expected_outer = Series(["aaA", "bbB", "c-C", "ddD", "-e-"])
# joint index of rhs [t, u]; u will be forced have index of s
rhs_idx = (
t.index.intersection(s.index)
if join == "inner"
else t.index.union(s.index)
if join == "outer"
else t.index.append(s.index.difference(t.index))
)
expected = expected_outer.loc[s.index.join(rhs_idx, how=join)]
result = s.str.cat([t, u], join=join, na_rep="-")
tm.assert_series_equal(result, expected)
with pytest.raises(TypeError, match="others must be Series,.*"):
# nested lists are forbidden
s.str.cat([t, list(u)], join=join)
# errors for incorrect lengths
rgx = r"If `others` contains arrays or lists \(or other list-likes.*"
z = Series(["1", "2", "3"]).values
# unindexed object of wrong length
with pytest.raises(ValueError, match=rgx):
s.str.cat(z, join=join)
# unindexed object of wrong length in list
with pytest.raises(ValueError, match=rgx):
s.str.cat([t, z], join=join)
def test_str_cat_all_na(index_or_series, index_or_series2):
# GH 24044
box = index_or_series
other = index_or_series2
# check that all NaNs in caller / target work
s = Index(["a", "b", "c", "d"])
s = s if box == Index else Series(s, index=s)
t = other([np.nan] * 4, dtype=object)
# add index of s for alignment
t = t if other == Index else Series(t, index=s)
# all-NA target
if box == Series:
expected = Series([np.nan] * 4, index=s.index, dtype=s.dtype)
else: # box == Index
# TODO: Strimg option, this should return string dtype
expected = Index([np.nan] * 4, dtype=object)
result = s.str.cat(t, join="left")
tm.assert_equal(result, expected)
# all-NA caller (only for Series)
if other == Series:
expected = Series([np.nan] * 4, dtype=object, index=t.index)
result = t.str.cat(s, join="left")
tm.assert_series_equal(result, expected)
def test_str_cat_special_cases():
s = Series(["a", "b", "c", "d"])
t = Series(["d", "a", "e", "b"], index=[3, 0, 4, 1])
# iterator of elements with different types
expected = Series(["aaa", "bbb", "c-c", "ddd", "-e-"])
result = s.str.cat(iter([t, s.values]), join="outer", na_rep="-")
tm.assert_series_equal(result, expected)
# right-align with different indexes in others
expected = Series(["aa-", "d-d"], index=[0, 3])
result = s.str.cat([t.loc[[0]], t.loc[[3]]], join="right", na_rep="-")
tm.assert_series_equal(result, expected)
def test_cat_on_filtered_index():
df = DataFrame(
index=MultiIndex.from_product(
[[2011, 2012], [1, 2, 3]], names=["year", "month"]
)
)
df = df.reset_index()
df = df[df.month > 1]
str_year = df.year.astype("str")
str_month = df.month.astype("str")
str_both = str_year.str.cat(str_month, sep=" ")
assert str_both.loc[1] == "2011 2"
str_multiple = str_year.str.cat([str_month, str_month], sep=" ")
assert str_multiple.loc[1] == "2011 2 2"
@pytest.mark.parametrize("klass", [tuple, list, np.array, Series, Index])
def test_cat_different_classes(klass):
# https://github.com/pandas-dev/pandas/issues/33425
s = Series(["a", "b", "c"])
result = s.str.cat(klass(["x", "y", "z"]))
expected = Series(["ax", "by", "cz"])
tm.assert_series_equal(result, expected)
def test_cat_on_series_dot_str():
# GH 28277
ps = Series(["AbC", "de", "FGHI", "j", "kLLLm"])
message = re.escape(
"others must be Series, Index, DataFrame, np.ndarray "
"or list-like (either containing only strings or "
"containing only objects of type Series/Index/"
"np.ndarray[1-dim])"
)
with pytest.raises(TypeError, match=message):
ps.str.cat(others=ps.str)

View File

@ -0,0 +1,724 @@
from datetime import datetime
import re
import numpy as np
import pytest
from pandas.core.dtypes.dtypes import ArrowDtype
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
_testing as tm,
)
def test_extract_expand_kwarg_wrong_type_raises(any_string_dtype):
# TODO: should this raise TypeError
values = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)
with pytest.raises(ValueError, match="expand must be True or False"):
values.str.extract(".*(BAD[_]+).*(BAD)", expand=None)
def test_extract_expand_kwarg(any_string_dtype):
s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)
expected = DataFrame(["BAD__", np.nan, np.nan], dtype=any_string_dtype)
result = s.str.extract(".*(BAD[_]+).*")
tm.assert_frame_equal(result, expected)
result = s.str.extract(".*(BAD[_]+).*", expand=True)
tm.assert_frame_equal(result, expected)
expected = DataFrame(
[["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype
)
result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=False)
tm.assert_frame_equal(result, expected)
def test_extract_expand_False_mixed_object():
ser = Series(
["aBAD_BAD", np.nan, "BAD_b_BAD", True, datetime.today(), "foo", None, 1, 2.0]
)
# two groups
result = ser.str.extract(".*(BAD[_]+).*(BAD)", expand=False)
er = [np.nan, np.nan] # empty row
expected = DataFrame(
[["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er], dtype=object
)
tm.assert_frame_equal(result, expected)
# single group
result = ser.str.extract(".*(BAD[_]+).*BAD", expand=False)
expected = Series(
["BAD_", np.nan, "BAD_", np.nan, np.nan, np.nan, None, np.nan, np.nan],
dtype=object,
)
tm.assert_series_equal(result, expected)
def test_extract_expand_index_raises():
# GH9980
# Index only works with one regex group since
# multi-group would expand to a frame
idx = Index(["A1", "A2", "A3", "A4", "B5"])
msg = "only one regex group is supported with Index"
with pytest.raises(ValueError, match=msg):
idx.str.extract("([AB])([123])", expand=False)
def test_extract_expand_no_capture_groups_raises(index_or_series, any_string_dtype):
s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype)
msg = "pattern contains no capture groups"
# no groups
with pytest.raises(ValueError, match=msg):
s_or_idx.str.extract("[ABC][123]", expand=False)
# only non-capturing groups
with pytest.raises(ValueError, match=msg):
s_or_idx.str.extract("(?:[AB]).*", expand=False)
def test_extract_expand_single_capture_group(index_or_series, any_string_dtype):
# single group renames series/index properly
s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype)
result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=False)
expected = index_or_series(["A", "A"], name="uno", dtype=any_string_dtype)
if index_or_series == Series:
tm.assert_series_equal(result, expected)
else:
tm.assert_index_equal(result, expected)
def test_extract_expand_capture_groups(any_string_dtype):
s = Series(["A1", "B2", "C3"], dtype=any_string_dtype)
# one group, no matches
result = s.str.extract("(_)", expand=False)
expected = Series([np.nan, np.nan, np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
# two groups, no matches
result = s.str.extract("(_)(_)", expand=False)
expected = DataFrame(
[[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype
)
tm.assert_frame_equal(result, expected)
# one group, some matches
result = s.str.extract("([AB])[123]", expand=False)
expected = Series(["A", "B", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
# two groups, some matches
result = s.str.extract("([AB])([123])", expand=False)
expected = DataFrame(
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype
)
tm.assert_frame_equal(result, expected)
# one named group
result = s.str.extract("(?P<letter>[AB])", expand=False)
expected = Series(["A", "B", np.nan], name="letter", dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
# two named groups
result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=False)
expected = DataFrame(
[["A", "1"], ["B", "2"], [np.nan, np.nan]],
columns=["letter", "number"],
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, expected)
# mix named and unnamed groups
result = s.str.extract("([AB])(?P<number>[123])", expand=False)
expected = DataFrame(
[["A", "1"], ["B", "2"], [np.nan, np.nan]],
columns=[0, "number"],
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, expected)
# one normal group, one non-capturing group
result = s.str.extract("([AB])(?:[123])", expand=False)
expected = Series(["A", "B", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
# two normal groups, one non-capturing group
s = Series(["A11", "B22", "C33"], dtype=any_string_dtype)
result = s.str.extract("([AB])([123])(?:[123])", expand=False)
expected = DataFrame(
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype
)
tm.assert_frame_equal(result, expected)
# one optional group followed by one normal group
s = Series(["A1", "B2", "3"], dtype=any_string_dtype)
result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=False)
expected = DataFrame(
[["A", "1"], ["B", "2"], [np.nan, "3"]],
columns=["letter", "number"],
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, expected)
# one normal group followed by one optional group
s = Series(["A1", "B2", "C"], dtype=any_string_dtype)
result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=False)
expected = DataFrame(
[["A", "1"], ["B", "2"], ["C", np.nan]],
columns=["letter", "number"],
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, expected)
def test_extract_expand_capture_groups_index(index, any_string_dtype):
# https://github.com/pandas-dev/pandas/issues/6348
# not passing index to the extractor
data = ["A1", "B2", "C"]
if len(index) == 0:
pytest.skip("Test requires len(index) > 0")
while len(index) < len(data):
index = index.repeat(2)
index = index[: len(data)]
ser = Series(data, index=index, dtype=any_string_dtype)
result = ser.str.extract(r"(\d)", expand=False)
expected = Series(["1", "2", np.nan], index=index, dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
result = ser.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=False)
expected = DataFrame(
[["A", "1"], ["B", "2"], ["C", np.nan]],
columns=["letter", "number"],
index=index,
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, expected)
def test_extract_single_series_name_is_preserved(any_string_dtype):
s = Series(["a3", "b3", "c2"], name="bob", dtype=any_string_dtype)
result = s.str.extract(r"(?P<sue>[a-z])", expand=False)
expected = Series(["a", "b", "c"], name="sue", dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
def test_extract_expand_True(any_string_dtype):
# Contains tests like those in test_match and some others.
s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)
result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=True)
expected = DataFrame(
[["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype
)
tm.assert_frame_equal(result, expected)
def test_extract_expand_True_mixed_object():
er = [np.nan, np.nan] # empty row
mixed = Series(
[
"aBAD_BAD",
np.nan,
"BAD_b_BAD",
True,
datetime.today(),
"foo",
None,
1,
2.0,
]
)
result = mixed.str.extract(".*(BAD[_]+).*(BAD)", expand=True)
expected = DataFrame(
[["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er], dtype=object
)
tm.assert_frame_equal(result, expected)
def test_extract_expand_True_single_capture_group_raises(
index_or_series, any_string_dtype
):
# these should work for both Series and Index
# no groups
s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype)
msg = "pattern contains no capture groups"
with pytest.raises(ValueError, match=msg):
s_or_idx.str.extract("[ABC][123]", expand=True)
# only non-capturing groups
with pytest.raises(ValueError, match=msg):
s_or_idx.str.extract("(?:[AB]).*", expand=True)
def test_extract_expand_True_single_capture_group(index_or_series, any_string_dtype):
# single group renames series/index properly
s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype)
result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=True)
expected = DataFrame({"uno": ["A", "A"]}, dtype=any_string_dtype)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("name", [None, "series_name"])
def test_extract_series(name, any_string_dtype):
# extract should give the same result whether or not the series has a name.
s = Series(["A1", "B2", "C3"], name=name, dtype=any_string_dtype)
# one group, no matches
result = s.str.extract("(_)", expand=True)
expected = DataFrame([np.nan, np.nan, np.nan], dtype=any_string_dtype)
tm.assert_frame_equal(result, expected)
# two groups, no matches
result = s.str.extract("(_)(_)", expand=True)
expected = DataFrame(
[[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype
)
tm.assert_frame_equal(result, expected)
# one group, some matches
result = s.str.extract("([AB])[123]", expand=True)
expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype)
tm.assert_frame_equal(result, expected)
# two groups, some matches
result = s.str.extract("([AB])([123])", expand=True)
expected = DataFrame(
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype
)
tm.assert_frame_equal(result, expected)
# one named group
result = s.str.extract("(?P<letter>[AB])", expand=True)
expected = DataFrame({"letter": ["A", "B", np.nan]}, dtype=any_string_dtype)
tm.assert_frame_equal(result, expected)
# two named groups
result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=True)
expected = DataFrame(
[["A", "1"], ["B", "2"], [np.nan, np.nan]],
columns=["letter", "number"],
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, expected)
# mix named and unnamed groups
result = s.str.extract("([AB])(?P<number>[123])", expand=True)
expected = DataFrame(
[["A", "1"], ["B", "2"], [np.nan, np.nan]],
columns=[0, "number"],
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, expected)
# one normal group, one non-capturing group
result = s.str.extract("([AB])(?:[123])", expand=True)
expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype)
tm.assert_frame_equal(result, expected)
def test_extract_optional_groups(any_string_dtype):
# two normal groups, one non-capturing group
s = Series(["A11", "B22", "C33"], dtype=any_string_dtype)
result = s.str.extract("([AB])([123])(?:[123])", expand=True)
expected = DataFrame(
[["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype
)
tm.assert_frame_equal(result, expected)
# one optional group followed by one normal group
s = Series(["A1", "B2", "3"], dtype=any_string_dtype)
result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=True)
expected = DataFrame(
[["A", "1"], ["B", "2"], [np.nan, "3"]],
columns=["letter", "number"],
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, expected)
# one normal group followed by one optional group
s = Series(["A1", "B2", "C"], dtype=any_string_dtype)
result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=True)
expected = DataFrame(
[["A", "1"], ["B", "2"], ["C", np.nan]],
columns=["letter", "number"],
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, expected)
def test_extract_dataframe_capture_groups_index(index, any_string_dtype):
# GH6348
# not passing index to the extractor
data = ["A1", "B2", "C"]
if len(index) < len(data):
pytest.skip(f"Index needs more than {len(data)} values")
index = index[: len(data)]
s = Series(data, index=index, dtype=any_string_dtype)
result = s.str.extract(r"(\d)", expand=True)
expected = DataFrame(["1", "2", np.nan], index=index, dtype=any_string_dtype)
tm.assert_frame_equal(result, expected)
result = s.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=True)
expected = DataFrame(
[["A", "1"], ["B", "2"], ["C", np.nan]],
columns=["letter", "number"],
index=index,
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, expected)
def test_extract_single_group_returns_frame(any_string_dtype):
# GH11386 extract should always return DataFrame, even when
# there is only one group. Prior to v0.18.0, extract returned
# Series when there was only one group in the regex.
s = Series(["a3", "b3", "c2"], name="series_name", dtype=any_string_dtype)
result = s.str.extract(r"(?P<letter>[a-z])", expand=True)
expected = DataFrame({"letter": ["a", "b", "c"]}, dtype=any_string_dtype)
tm.assert_frame_equal(result, expected)
def test_extractall(any_string_dtype):
data = [
"dave@google.com",
"tdhock5@gmail.com",
"maudelaperriere@gmail.com",
"rob@gmail.com some text steve@gmail.com",
"a@b.com some text c@d.com and e@f.com",
np.nan,
"",
]
expected_tuples = [
("dave", "google", "com"),
("tdhock5", "gmail", "com"),
("maudelaperriere", "gmail", "com"),
("rob", "gmail", "com"),
("steve", "gmail", "com"),
("a", "b", "com"),
("c", "d", "com"),
("e", "f", "com"),
]
pat = r"""
(?P<user>[a-z0-9]+)
@
(?P<domain>[a-z]+)
\.
(?P<tld>[a-z]{2,4})
"""
expected_columns = ["user", "domain", "tld"]
s = Series(data, dtype=any_string_dtype)
# extractall should return a DataFrame with one row for each match, indexed by the
# subject from which the match came.
expected_index = MultiIndex.from_tuples(
[(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2)],
names=(None, "match"),
)
expected = DataFrame(
expected_tuples, expected_index, expected_columns, dtype=any_string_dtype
)
result = s.str.extractall(pat, flags=re.VERBOSE)
tm.assert_frame_equal(result, expected)
# The index of the input Series should be used to construct the index of the output
# DataFrame:
mi = MultiIndex.from_tuples(
[
("single", "Dave"),
("single", "Toby"),
("single", "Maude"),
("multiple", "robAndSteve"),
("multiple", "abcdef"),
("none", "missing"),
("none", "empty"),
]
)
s = Series(data, index=mi, dtype=any_string_dtype)
expected_index = MultiIndex.from_tuples(
[
("single", "Dave", 0),
("single", "Toby", 0),
("single", "Maude", 0),
("multiple", "robAndSteve", 0),
("multiple", "robAndSteve", 1),
("multiple", "abcdef", 0),
("multiple", "abcdef", 1),
("multiple", "abcdef", 2),
],
names=(None, None, "match"),
)
expected = DataFrame(
expected_tuples, expected_index, expected_columns, dtype=any_string_dtype
)
result = s.str.extractall(pat, flags=re.VERBOSE)
tm.assert_frame_equal(result, expected)
# MultiIndexed subject with names.
s = Series(data, index=mi, dtype=any_string_dtype)
s.index.names = ("matches", "description")
expected_index.names = ("matches", "description", "match")
expected = DataFrame(
expected_tuples, expected_index, expected_columns, dtype=any_string_dtype
)
result = s.str.extractall(pat, flags=re.VERBOSE)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"pat,expected_names",
[
# optional groups.
("(?P<letter>[AB])?(?P<number>[123])", ["letter", "number"]),
# only one of two groups has a name.
("([AB])?(?P<number>[123])", [0, "number"]),
],
)
def test_extractall_column_names(pat, expected_names, any_string_dtype):
s = Series(["", "A1", "32"], dtype=any_string_dtype)
result = s.str.extractall(pat)
expected = DataFrame(
[("A", "1"), (np.nan, "3"), (np.nan, "2")],
index=MultiIndex.from_tuples([(1, 0), (2, 0), (2, 1)], names=(None, "match")),
columns=expected_names,
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, expected)
def test_extractall_single_group(any_string_dtype):
s = Series(["a3", "b3", "d4c2"], name="series_name", dtype=any_string_dtype)
expected_index = MultiIndex.from_tuples(
[(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match")
)
# extractall(one named group) returns DataFrame with one named column.
result = s.str.extractall(r"(?P<letter>[a-z])")
expected = DataFrame(
{"letter": ["a", "b", "d", "c"]}, index=expected_index, dtype=any_string_dtype
)
tm.assert_frame_equal(result, expected)
# extractall(one un-named group) returns DataFrame with one un-named column.
result = s.str.extractall(r"([a-z])")
expected = DataFrame(
["a", "b", "d", "c"], index=expected_index, dtype=any_string_dtype
)
tm.assert_frame_equal(result, expected)
def test_extractall_single_group_with_quantifier(any_string_dtype):
# GH#13382
# extractall(one un-named group with quantifier) returns DataFrame with one un-named
# column.
s = Series(["ab3", "abc3", "d4cd2"], name="series_name", dtype=any_string_dtype)
result = s.str.extractall(r"([a-z]+)")
expected = DataFrame(
["ab", "abc", "d", "cd"],
index=MultiIndex.from_tuples(
[(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match")
),
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"data, names",
[
([], (None,)),
([], ("i1",)),
([], (None, "i2")),
([], ("i1", "i2")),
(["a3", "b3", "d4c2"], (None,)),
(["a3", "b3", "d4c2"], ("i1", "i2")),
(["a3", "b3", "d4c2"], (None, "i2")),
(["a3", "b3", "d4c2"], ("i1", "i2")),
],
)
def test_extractall_no_matches(data, names, any_string_dtype):
# GH19075 extractall with no matches should return a valid MultiIndex
n = len(data)
if len(names) == 1:
index = Index(range(n), name=names[0])
else:
tuples = (tuple([i] * (n - 1)) for i in range(n))
index = MultiIndex.from_tuples(tuples, names=names)
s = Series(data, name="series_name", index=index, dtype=any_string_dtype)
expected_index = MultiIndex.from_tuples([], names=(names + ("match",)))
# one un-named group.
result = s.str.extractall("(z)")
expected = DataFrame(columns=[0], index=expected_index, dtype=any_string_dtype)
tm.assert_frame_equal(result, expected)
# two un-named groups.
result = s.str.extractall("(z)(z)")
expected = DataFrame(columns=[0, 1], index=expected_index, dtype=any_string_dtype)
tm.assert_frame_equal(result, expected)
# one named group.
result = s.str.extractall("(?P<first>z)")
expected = DataFrame(
columns=["first"], index=expected_index, dtype=any_string_dtype
)
tm.assert_frame_equal(result, expected)
# two named groups.
result = s.str.extractall("(?P<first>z)(?P<second>z)")
expected = DataFrame(
columns=["first", "second"], index=expected_index, dtype=any_string_dtype
)
tm.assert_frame_equal(result, expected)
# one named, one un-named.
result = s.str.extractall("(z)(?P<second>z)")
expected = DataFrame(
columns=[0, "second"], index=expected_index, dtype=any_string_dtype
)
tm.assert_frame_equal(result, expected)
def test_extractall_stringindex(any_string_dtype):
s = Series(["a1a2", "b1", "c1"], name="xxx", dtype=any_string_dtype)
result = s.str.extractall(r"[ab](?P<digit>\d)")
expected = DataFrame(
{"digit": ["1", "2", "1"]},
index=MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, "match"]),
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, expected)
# index should return the same result as the default index without name thus
# index.name doesn't affect to the result
if any_string_dtype == "object":
for idx in [
Index(["a1a2", "b1", "c1"], dtype=object),
Index(["a1a2", "b1", "c1"], name="xxx", dtype=object),
]:
result = idx.str.extractall(r"[ab](?P<digit>\d)")
tm.assert_frame_equal(result, expected)
s = Series(
["a1a2", "b1", "c1"],
name="s_name",
index=Index(["XX", "yy", "zz"], name="idx_name"),
dtype=any_string_dtype,
)
result = s.str.extractall(r"[ab](?P<digit>\d)")
expected = DataFrame(
{"digit": ["1", "2", "1"]},
index=MultiIndex.from_tuples(
[("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", "match"]
),
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, expected)
def test_extractall_no_capture_groups_raises(any_string_dtype):
# Does not make sense to use extractall with a regex that has no capture groups.
# (it returns DataFrame with one column for each capture group)
s = Series(["a3", "b3", "d4c2"], name="series_name", dtype=any_string_dtype)
with pytest.raises(ValueError, match="no capture groups"):
s.str.extractall(r"[a-z]")
def test_extract_index_one_two_groups():
s = Series(["a3", "b3", "d4c2"], index=["A3", "B3", "D4"], name="series_name")
r = s.index.str.extract(r"([A-Z])", expand=True)
e = DataFrame(["A", "B", "D"])
tm.assert_frame_equal(r, e)
# Prior to v0.18.0, index.str.extract(regex with one group)
# returned Index. With more than one group, extract raised an
# error (GH9980). Now extract always returns DataFrame.
r = s.index.str.extract(r"(?P<letter>[A-Z])(?P<digit>[0-9])", expand=True)
e_list = [("A", "3"), ("B", "3"), ("D", "4")]
e = DataFrame(e_list, columns=["letter", "digit"])
tm.assert_frame_equal(r, e)
def test_extractall_same_as_extract(any_string_dtype):
s = Series(["a3", "b3", "c2"], name="series_name", dtype=any_string_dtype)
pattern_two_noname = r"([a-z])([0-9])"
extract_two_noname = s.str.extract(pattern_two_noname, expand=True)
has_multi_index = s.str.extractall(pattern_two_noname)
no_multi_index = has_multi_index.xs(0, level="match")
tm.assert_frame_equal(extract_two_noname, no_multi_index)
pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])"
extract_two_named = s.str.extract(pattern_two_named, expand=True)
has_multi_index = s.str.extractall(pattern_two_named)
no_multi_index = has_multi_index.xs(0, level="match")
tm.assert_frame_equal(extract_two_named, no_multi_index)
pattern_one_named = r"(?P<group_name>[a-z])"
extract_one_named = s.str.extract(pattern_one_named, expand=True)
has_multi_index = s.str.extractall(pattern_one_named)
no_multi_index = has_multi_index.xs(0, level="match")
tm.assert_frame_equal(extract_one_named, no_multi_index)
pattern_one_noname = r"([a-z])"
extract_one_noname = s.str.extract(pattern_one_noname, expand=True)
has_multi_index = s.str.extractall(pattern_one_noname)
no_multi_index = has_multi_index.xs(0, level="match")
tm.assert_frame_equal(extract_one_noname, no_multi_index)
def test_extractall_same_as_extract_subject_index(any_string_dtype):
# same as above tests, but s has an MultiIndex.
mi = MultiIndex.from_tuples(
[("A", "first"), ("B", "second"), ("C", "third")],
names=("capital", "ordinal"),
)
s = Series(["a3", "b3", "c2"], index=mi, name="series_name", dtype=any_string_dtype)
pattern_two_noname = r"([a-z])([0-9])"
extract_two_noname = s.str.extract(pattern_two_noname, expand=True)
has_match_index = s.str.extractall(pattern_two_noname)
no_match_index = has_match_index.xs(0, level="match")
tm.assert_frame_equal(extract_two_noname, no_match_index)
pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])"
extract_two_named = s.str.extract(pattern_two_named, expand=True)
has_match_index = s.str.extractall(pattern_two_named)
no_match_index = has_match_index.xs(0, level="match")
tm.assert_frame_equal(extract_two_named, no_match_index)
pattern_one_named = r"(?P<group_name>[a-z])"
extract_one_named = s.str.extract(pattern_one_named, expand=True)
has_match_index = s.str.extractall(pattern_one_named)
no_match_index = has_match_index.xs(0, level="match")
tm.assert_frame_equal(extract_one_named, no_match_index)
pattern_one_noname = r"([a-z])"
extract_one_noname = s.str.extract(pattern_one_noname, expand=True)
has_match_index = s.str.extractall(pattern_one_noname)
no_match_index = has_match_index.xs(0, level="match")
tm.assert_frame_equal(extract_one_noname, no_match_index)
def test_extractall_preserves_dtype():
# Ensure that when extractall is called on a series with specific dtypes set, that
# the dtype is preserved in the resulting DataFrame's column.
pa = pytest.importorskip("pyarrow")
result = Series(["abc", "ab"], dtype=ArrowDtype(pa.string())).str.extractall("(ab)")
assert result.dtypes[0] == "string[pyarrow]"

View File

@ -0,0 +1,972 @@
from datetime import datetime
import re
import numpy as np
import pytest
from pandas.errors import PerformanceWarning
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Series,
_testing as tm,
)
from pandas.tests.strings import (
_convert_na_value,
object_pyarrow_numpy,
)
# --------------------------------------------------------------------------------------
# str.contains
# --------------------------------------------------------------------------------------
def using_pyarrow(dtype):
return dtype in ("string[pyarrow]", "string[pyarrow_numpy]")
def test_contains(any_string_dtype):
values = np.array(
["foo", np.nan, "fooommm__foo", "mmm_", "foommm[_]+bar"], dtype=np.object_
)
values = Series(values, dtype=any_string_dtype)
pat = "mmm[_]+"
result = values.str.contains(pat)
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series(
np.array([False, np.nan, True, True, False], dtype=np.object_),
dtype=expected_dtype,
)
tm.assert_series_equal(result, expected)
result = values.str.contains(pat, regex=False)
expected = Series(
np.array([False, np.nan, False, False, True], dtype=np.object_),
dtype=expected_dtype,
)
tm.assert_series_equal(result, expected)
values = Series(
np.array(["foo", "xyz", "fooommm__foo", "mmm_"], dtype=object),
dtype=any_string_dtype,
)
result = values.str.contains(pat)
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series(np.array([False, False, True, True]), dtype=expected_dtype)
tm.assert_series_equal(result, expected)
# case insensitive using regex
values = Series(
np.array(["Foo", "xYz", "fOOomMm__fOo", "MMM_"], dtype=object),
dtype=any_string_dtype,
)
result = values.str.contains("FOO|mmm", case=False)
expected = Series(np.array([True, False, True, True]), dtype=expected_dtype)
tm.assert_series_equal(result, expected)
# case insensitive without regex
result = values.str.contains("foo", regex=False, case=False)
expected = Series(np.array([True, False, True, False]), dtype=expected_dtype)
tm.assert_series_equal(result, expected)
# unicode
values = Series(
np.array(["foo", np.nan, "fooommm__foo", "mmm_"], dtype=np.object_),
dtype=any_string_dtype,
)
pat = "mmm[_]+"
result = values.str.contains(pat)
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series(
np.array([False, np.nan, True, True], dtype=np.object_), dtype=expected_dtype
)
tm.assert_series_equal(result, expected)
result = values.str.contains(pat, na=False)
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series(np.array([False, False, True, True]), dtype=expected_dtype)
tm.assert_series_equal(result, expected)
values = Series(
np.array(["foo", "xyz", "fooommm__foo", "mmm_"], dtype=np.object_),
dtype=any_string_dtype,
)
result = values.str.contains(pat)
expected = Series(np.array([False, False, True, True]), dtype=expected_dtype)
tm.assert_series_equal(result, expected)
def test_contains_object_mixed():
mixed = Series(
np.array(
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
dtype=object,
)
)
result = mixed.str.contains("o")
expected = Series(
np.array(
[False, np.nan, False, np.nan, np.nan, True, None, np.nan, np.nan],
dtype=np.object_,
)
)
tm.assert_series_equal(result, expected)
def test_contains_na_kwarg_for_object_category():
# gh 22158
# na for category
values = Series(["a", "b", "c", "a", np.nan], dtype="category")
result = values.str.contains("a", na=True)
expected = Series([True, False, False, True, True])
tm.assert_series_equal(result, expected)
result = values.str.contains("a", na=False)
expected = Series([True, False, False, True, False])
tm.assert_series_equal(result, expected)
# na for objects
values = Series(["a", "b", "c", "a", np.nan])
result = values.str.contains("a", na=True)
expected = Series([True, False, False, True, True])
tm.assert_series_equal(result, expected)
result = values.str.contains("a", na=False)
expected = Series([True, False, False, True, False])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"na, expected",
[
(None, pd.NA),
(True, True),
(False, False),
(0, False),
(3, True),
(np.nan, pd.NA),
],
)
@pytest.mark.parametrize("regex", [True, False])
def test_contains_na_kwarg_for_nullable_string_dtype(
nullable_string_dtype, na, expected, regex
):
# https://github.com/pandas-dev/pandas/pull/41025#issuecomment-824062416
values = Series(["a", "b", "c", "a", np.nan], dtype=nullable_string_dtype)
result = values.str.contains("a", na=na, regex=regex)
expected = Series([True, False, False, True, expected], dtype="boolean")
tm.assert_series_equal(result, expected)
def test_contains_moar(any_string_dtype):
# PR #1179
s = Series(
["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"],
dtype=any_string_dtype,
)
result = s.str.contains("a")
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series(
[False, False, False, True, True, False, np.nan, False, False, True],
dtype=expected_dtype,
)
tm.assert_series_equal(result, expected)
result = s.str.contains("a", case=False)
expected = Series(
[True, False, False, True, True, False, np.nan, True, False, True],
dtype=expected_dtype,
)
tm.assert_series_equal(result, expected)
result = s.str.contains("Aa")
expected = Series(
[False, False, False, True, False, False, np.nan, False, False, False],
dtype=expected_dtype,
)
tm.assert_series_equal(result, expected)
result = s.str.contains("ba")
expected = Series(
[False, False, False, True, False, False, np.nan, False, False, False],
dtype=expected_dtype,
)
tm.assert_series_equal(result, expected)
result = s.str.contains("ba", case=False)
expected = Series(
[False, False, False, True, True, False, np.nan, True, False, False],
dtype=expected_dtype,
)
tm.assert_series_equal(result, expected)
def test_contains_nan(any_string_dtype):
# PR #14171
s = Series([np.nan, np.nan, np.nan], dtype=any_string_dtype)
result = s.str.contains("foo", na=False)
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([False, False, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = s.str.contains("foo", na=True)
expected = Series([True, True, True], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = s.str.contains("foo", na="foo")
if any_string_dtype == "object":
expected = Series(["foo", "foo", "foo"], dtype=np.object_)
elif any_string_dtype == "string[pyarrow_numpy]":
expected = Series([True, True, True], dtype=np.bool_)
else:
expected = Series([True, True, True], dtype="boolean")
tm.assert_series_equal(result, expected)
result = s.str.contains("foo")
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([np.nan, np.nan, np.nan], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
# --------------------------------------------------------------------------------------
# str.startswith
# --------------------------------------------------------------------------------------
@pytest.mark.parametrize("pat", ["foo", ("foo", "baz")])
@pytest.mark.parametrize("dtype", ["object", "category"])
@pytest.mark.parametrize("null_value", [None, np.nan, pd.NA])
@pytest.mark.parametrize("na", [True, False])
def test_startswith(pat, dtype, null_value, na):
# add category dtype parametrizations for GH-36241
values = Series(
["om", null_value, "foo_nom", "nom", "bar_foo", null_value, "foo"],
dtype=dtype,
)
result = values.str.startswith(pat)
exp = Series([False, np.nan, True, False, False, np.nan, True])
if dtype == "object" and null_value is pd.NA:
# GH#18463
exp = exp.fillna(null_value)
elif dtype == "object" and null_value is None:
exp[exp.isna()] = None
tm.assert_series_equal(result, exp)
result = values.str.startswith(pat, na=na)
exp = Series([False, na, True, False, False, na, True])
tm.assert_series_equal(result, exp)
# mixed
mixed = np.array(
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
dtype=np.object_,
)
rs = Series(mixed).str.startswith("f")
xp = Series([False, np.nan, False, np.nan, np.nan, True, None, np.nan, np.nan])
tm.assert_series_equal(rs, xp)
@pytest.mark.parametrize("na", [None, True, False])
def test_startswith_nullable_string_dtype(nullable_string_dtype, na):
values = Series(
["om", None, "foo_nom", "nom", "bar_foo", None, "foo", "regex", "rege."],
dtype=nullable_string_dtype,
)
result = values.str.startswith("foo", na=na)
exp = Series(
[False, na, True, False, False, na, True, False, False], dtype="boolean"
)
tm.assert_series_equal(result, exp)
result = values.str.startswith("rege.", na=na)
exp = Series(
[False, na, False, False, False, na, False, False, True], dtype="boolean"
)
tm.assert_series_equal(result, exp)
# --------------------------------------------------------------------------------------
# str.endswith
# --------------------------------------------------------------------------------------
@pytest.mark.parametrize("pat", ["foo", ("foo", "baz")])
@pytest.mark.parametrize("dtype", ["object", "category"])
@pytest.mark.parametrize("null_value", [None, np.nan, pd.NA])
@pytest.mark.parametrize("na", [True, False])
def test_endswith(pat, dtype, null_value, na):
# add category dtype parametrizations for GH-36241
values = Series(
["om", null_value, "foo_nom", "nom", "bar_foo", null_value, "foo"],
dtype=dtype,
)
result = values.str.endswith(pat)
exp = Series([False, np.nan, False, False, True, np.nan, True])
if dtype == "object" and null_value is pd.NA:
# GH#18463
exp = exp.fillna(null_value)
elif dtype == "object" and null_value is None:
exp[exp.isna()] = None
tm.assert_series_equal(result, exp)
result = values.str.endswith(pat, na=na)
exp = Series([False, na, False, False, True, na, True])
tm.assert_series_equal(result, exp)
# mixed
mixed = np.array(
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
dtype=object,
)
rs = Series(mixed).str.endswith("f")
xp = Series([False, np.nan, False, np.nan, np.nan, False, None, np.nan, np.nan])
tm.assert_series_equal(rs, xp)
@pytest.mark.parametrize("na", [None, True, False])
def test_endswith_nullable_string_dtype(nullable_string_dtype, na):
values = Series(
["om", None, "foo_nom", "nom", "bar_foo", None, "foo", "regex", "rege."],
dtype=nullable_string_dtype,
)
result = values.str.endswith("foo", na=na)
exp = Series(
[False, na, False, False, True, na, True, False, False], dtype="boolean"
)
tm.assert_series_equal(result, exp)
result = values.str.endswith("rege.", na=na)
exp = Series(
[False, na, False, False, False, na, False, False, True], dtype="boolean"
)
tm.assert_series_equal(result, exp)
# --------------------------------------------------------------------------------------
# str.replace
# --------------------------------------------------------------------------------------
def test_replace(any_string_dtype):
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
result = ser.str.replace("BAD[_]*", "", regex=True)
expected = Series(["foobar", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
def test_replace_max_replacements(any_string_dtype):
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
expected = Series(["foobarBAD", np.nan], dtype=any_string_dtype)
result = ser.str.replace("BAD[_]*", "", n=1, regex=True)
tm.assert_series_equal(result, expected)
expected = Series(["foo__barBAD", np.nan], dtype=any_string_dtype)
result = ser.str.replace("BAD", "", n=1, regex=False)
tm.assert_series_equal(result, expected)
def test_replace_mixed_object():
ser = Series(
["aBAD", np.nan, "bBAD", True, datetime.today(), "fooBAD", None, 1, 2.0]
)
result = Series(ser).str.replace("BAD[_]*", "", regex=True)
expected = Series(
["a", np.nan, "b", np.nan, np.nan, "foo", None, np.nan, np.nan], dtype=object
)
tm.assert_series_equal(result, expected)
def test_replace_unicode(any_string_dtype):
ser = Series([b"abcd,\xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
expected = Series([b"abcd, \xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE, regex=True)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("repl", [None, 3, {"a": "b"}])
@pytest.mark.parametrize("data", [["a", "b", None], ["a", "b", "c", "ad"]])
def test_replace_wrong_repl_type_raises(any_string_dtype, index_or_series, repl, data):
# https://github.com/pandas-dev/pandas/issues/13438
msg = "repl must be a string or callable"
obj = index_or_series(data, dtype=any_string_dtype)
with pytest.raises(TypeError, match=msg):
obj.str.replace("a", repl)
def test_replace_callable(any_string_dtype):
# GH 15055
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
# test with callable
repl = lambda m: m.group(0).swapcase()
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace("[a-z][A-Z]{2}", repl, n=2, regex=True)
expected = Series(["foObaD__baRbaD", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"repl", [lambda: None, lambda m, x: None, lambda m, x, y=None: None]
)
def test_replace_callable_raises(any_string_dtype, repl):
# GH 15055
values = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
# test with wrong number of arguments, raising an error
msg = (
r"((takes)|(missing)) (?(2)from \d+ to )?\d+ "
r"(?(3)required )positional arguments?"
)
with pytest.raises(TypeError, match=msg):
with tm.maybe_produces_warning(
PerformanceWarning, using_pyarrow(any_string_dtype)
):
values.str.replace("a", repl, regex=True)
def test_replace_callable_named_groups(any_string_dtype):
# test regex named groups
ser = Series(["Foo Bar Baz", np.nan], dtype=any_string_dtype)
pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)"
repl = lambda m: m.group("middle").swapcase()
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace(pat, repl, regex=True)
expected = Series(["bAR", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
def test_replace_compiled_regex(any_string_dtype):
# GH 15446
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
# test with compiled regex
pat = re.compile(r"BAD_*")
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace(pat, "", regex=True)
expected = Series(["foobar", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace(pat, "", n=1, regex=True)
expected = Series(["foobarBAD", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
def test_replace_compiled_regex_mixed_object():
pat = re.compile(r"BAD_*")
ser = Series(
["aBAD", np.nan, "bBAD", True, datetime.today(), "fooBAD", None, 1, 2.0]
)
result = Series(ser).str.replace(pat, "", regex=True)
expected = Series(
["a", np.nan, "b", np.nan, np.nan, "foo", None, np.nan, np.nan], dtype=object
)
tm.assert_series_equal(result, expected)
def test_replace_compiled_regex_unicode(any_string_dtype):
ser = Series([b"abcd,\xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
expected = Series([b"abcd, \xc3\xa0".decode("utf-8")], dtype=any_string_dtype)
pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE)
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace(pat, ", ", regex=True)
tm.assert_series_equal(result, expected)
def test_replace_compiled_regex_raises(any_string_dtype):
# case and flags provided to str.replace will have no effect
# and will produce warnings
ser = Series(["fooBAD__barBAD__bad", np.nan], dtype=any_string_dtype)
pat = re.compile(r"BAD_*")
msg = "case and flags cannot be set when pat is a compiled regex"
with pytest.raises(ValueError, match=msg):
ser.str.replace(pat, "", flags=re.IGNORECASE, regex=True)
with pytest.raises(ValueError, match=msg):
ser.str.replace(pat, "", case=False, regex=True)
with pytest.raises(ValueError, match=msg):
ser.str.replace(pat, "", case=True, regex=True)
def test_replace_compiled_regex_callable(any_string_dtype):
# test with callable
ser = Series(["fooBAD__barBAD", np.nan], dtype=any_string_dtype)
repl = lambda m: m.group(0).swapcase()
pat = re.compile("[a-z][A-Z]{2}")
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace(pat, repl, n=2, regex=True)
expected = Series(["foObaD__baRbaD", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"regex,expected", [(True, ["bao", "bao", np.nan]), (False, ["bao", "foo", np.nan])]
)
def test_replace_literal(regex, expected, any_string_dtype):
# GH16808 literal replace (regex=False vs regex=True)
ser = Series(["f.o", "foo", np.nan], dtype=any_string_dtype)
expected = Series(expected, dtype=any_string_dtype)
result = ser.str.replace("f.", "ba", regex=regex)
tm.assert_series_equal(result, expected)
def test_replace_literal_callable_raises(any_string_dtype):
ser = Series([], dtype=any_string_dtype)
repl = lambda m: m.group(0).swapcase()
msg = "Cannot use a callable replacement when regex=False"
with pytest.raises(ValueError, match=msg):
ser.str.replace("abc", repl, regex=False)
def test_replace_literal_compiled_raises(any_string_dtype):
ser = Series([], dtype=any_string_dtype)
pat = re.compile("[a-z][A-Z]{2}")
msg = "Cannot use a compiled regex as replacement pattern with regex=False"
with pytest.raises(ValueError, match=msg):
ser.str.replace(pat, "", regex=False)
def test_replace_moar(any_string_dtype):
# PR #1179
ser = Series(
["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"],
dtype=any_string_dtype,
)
result = ser.str.replace("A", "YYY")
expected = Series(
["YYY", "B", "C", "YYYaba", "Baca", "", np.nan, "CYYYBYYY", "dog", "cat"],
dtype=any_string_dtype,
)
tm.assert_series_equal(result, expected)
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace("A", "YYY", case=False)
expected = Series(
[
"YYY",
"B",
"C",
"YYYYYYbYYY",
"BYYYcYYY",
"",
np.nan,
"CYYYBYYY",
"dog",
"cYYYt",
],
dtype=any_string_dtype,
)
tm.assert_series_equal(result, expected)
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace("^.a|dog", "XX-XX ", case=False, regex=True)
expected = Series(
[
"A",
"B",
"C",
"XX-XX ba",
"XX-XX ca",
"",
np.nan,
"XX-XX BA",
"XX-XX ",
"XX-XX t",
],
dtype=any_string_dtype,
)
tm.assert_series_equal(result, expected)
def test_replace_not_case_sensitive_not_regex(any_string_dtype):
# https://github.com/pandas-dev/pandas/issues/41602
ser = Series(["A.", "a.", "Ab", "ab", np.nan], dtype=any_string_dtype)
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace("a", "c", case=False, regex=False)
expected = Series(["c.", "c.", "cb", "cb", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.replace("a.", "c.", case=False, regex=False)
expected = Series(["c.", "c.", "Ab", "ab", np.nan], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
def test_replace_regex(any_string_dtype):
# https://github.com/pandas-dev/pandas/pull/24809
s = Series(["a", "b", "ac", np.nan, ""], dtype=any_string_dtype)
result = s.str.replace("^.$", "a", regex=True)
expected = Series(["a", "a", "ac", np.nan, ""], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("regex", [True, False])
def test_replace_regex_single_character(regex, any_string_dtype):
# https://github.com/pandas-dev/pandas/pull/24809, enforced in 2.0
# GH 24804
s = Series(["a.b", ".", "b", np.nan, ""], dtype=any_string_dtype)
result = s.str.replace(".", "a", regex=regex)
if regex:
expected = Series(["aaa", "a", "a", np.nan, ""], dtype=any_string_dtype)
else:
expected = Series(["aab", "a", "b", np.nan, ""], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
# --------------------------------------------------------------------------------------
# str.match
# --------------------------------------------------------------------------------------
def test_match(any_string_dtype):
# New match behavior introduced in 0.13
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
values = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype)
result = values.str.match(".*(BAD[_]+).*(BAD)")
expected = Series([True, np.nan, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
values = Series(
["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
)
result = values.str.match(".*BAD[_]+.*BAD")
expected = Series([True, True, np.nan, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = values.str.match("BAD[_]+.*BAD")
expected = Series([False, True, np.nan, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
values = Series(
["fooBAD__barBAD", "^BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
)
result = values.str.match("^BAD[_]+.*BAD")
expected = Series([False, False, np.nan, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = values.str.match("\\^BAD[_]+.*BAD")
expected = Series([False, True, np.nan, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
def test_match_mixed_object():
mixed = Series(
[
"aBAD_BAD",
np.nan,
"BAD_b_BAD",
True,
datetime.today(),
"foo",
None,
1,
2.0,
]
)
result = Series(mixed).str.match(".*(BAD[_]+).*(BAD)")
expected = Series([True, np.nan, True, np.nan, np.nan, False, None, np.nan, np.nan])
assert isinstance(result, Series)
tm.assert_series_equal(result, expected)
def test_match_na_kwarg(any_string_dtype):
# GH #6609
s = Series(["a", "b", np.nan], dtype=any_string_dtype)
result = s.str.match("a", na=False)
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([True, False, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = s.str.match("a")
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([True, False, np.nan], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
def test_match_case_kwarg(any_string_dtype):
values = Series(["ab", "AB", "abc", "ABC"], dtype=any_string_dtype)
result = values.str.match("ab", case=False)
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([True, True, True, True], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
# --------------------------------------------------------------------------------------
# str.fullmatch
# --------------------------------------------------------------------------------------
def test_fullmatch(any_string_dtype):
# GH 32806
ser = Series(
["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
)
result = ser.str.fullmatch(".*BAD[_]+.*BAD")
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([True, False, np.nan, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
def test_fullmatch_dollar_literal(any_string_dtype):
# GH 56652
ser = Series(["foo", "foo$foo", np.nan, "foo$"], dtype=any_string_dtype)
result = ser.str.fullmatch("foo\\$")
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([False, False, np.nan, True], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
def test_fullmatch_na_kwarg(any_string_dtype):
ser = Series(
["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype=any_string_dtype
)
result = ser.str.fullmatch(".*BAD[_]+.*BAD", na=False)
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([True, False, False, False], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
def test_fullmatch_case_kwarg(any_string_dtype):
ser = Series(["ab", "AB", "abc", "ABC"], dtype=any_string_dtype)
expected_dtype = np.bool_ if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series([True, False, False, False], dtype=expected_dtype)
result = ser.str.fullmatch("ab", case=True)
tm.assert_series_equal(result, expected)
expected = Series([True, True, False, False], dtype=expected_dtype)
result = ser.str.fullmatch("ab", case=False)
tm.assert_series_equal(result, expected)
with tm.maybe_produces_warning(PerformanceWarning, using_pyarrow(any_string_dtype)):
result = ser.str.fullmatch("ab", flags=re.IGNORECASE)
tm.assert_series_equal(result, expected)
# --------------------------------------------------------------------------------------
# str.findall
# --------------------------------------------------------------------------------------
def test_findall(any_string_dtype):
ser = Series(["fooBAD__barBAD", np.nan, "foo", "BAD"], dtype=any_string_dtype)
result = ser.str.findall("BAD[_]*")
expected = Series([["BAD__", "BAD"], np.nan, [], ["BAD"]])
expected = _convert_na_value(ser, expected)
tm.assert_series_equal(result, expected)
def test_findall_mixed_object():
ser = Series(
[
"fooBAD__barBAD",
np.nan,
"foo",
True,
datetime.today(),
"BAD",
None,
1,
2.0,
]
)
result = ser.str.findall("BAD[_]*")
expected = Series(
[
["BAD__", "BAD"],
np.nan,
[],
np.nan,
np.nan,
["BAD"],
None,
np.nan,
np.nan,
]
)
tm.assert_series_equal(result, expected)
# --------------------------------------------------------------------------------------
# str.find
# --------------------------------------------------------------------------------------
def test_find(any_string_dtype):
ser = Series(
["ABCDEFG", "BCDEFEF", "DEFGHIJEF", "EFGHEF", "XXXX"], dtype=any_string_dtype
)
expected_dtype = np.int64 if any_string_dtype in object_pyarrow_numpy else "Int64"
result = ser.str.find("EF")
expected = Series([4, 3, 1, 0, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
expected = np.array([v.find("EF") for v in np.array(ser)], dtype=np.int64)
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
result = ser.str.rfind("EF")
expected = Series([4, 5, 7, 4, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
expected = np.array([v.rfind("EF") for v in np.array(ser)], dtype=np.int64)
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
result = ser.str.find("EF", 3)
expected = Series([4, 3, 7, 4, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
expected = np.array([v.find("EF", 3) for v in np.array(ser)], dtype=np.int64)
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
result = ser.str.rfind("EF", 3)
expected = Series([4, 5, 7, 4, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
expected = np.array([v.rfind("EF", 3) for v in np.array(ser)], dtype=np.int64)
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
result = ser.str.find("EF", 3, 6)
expected = Series([4, 3, -1, 4, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
expected = np.array([v.find("EF", 3, 6) for v in np.array(ser)], dtype=np.int64)
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
result = ser.str.rfind("EF", 3, 6)
expected = Series([4, 3, -1, 4, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
expected = np.array([v.rfind("EF", 3, 6) for v in np.array(ser)], dtype=np.int64)
tm.assert_numpy_array_equal(np.array(result, dtype=np.int64), expected)
def test_find_bad_arg_raises(any_string_dtype):
ser = Series([], dtype=any_string_dtype)
with pytest.raises(TypeError, match="expected a string object, not int"):
ser.str.find(0)
with pytest.raises(TypeError, match="expected a string object, not int"):
ser.str.rfind(0)
def test_find_nan(any_string_dtype):
ser = Series(
["ABCDEFG", np.nan, "DEFGHIJEF", np.nan, "XXXX"], dtype=any_string_dtype
)
expected_dtype = np.float64 if any_string_dtype in object_pyarrow_numpy else "Int64"
result = ser.str.find("EF")
expected = Series([4, np.nan, 1, np.nan, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = ser.str.rfind("EF")
expected = Series([4, np.nan, 7, np.nan, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = ser.str.find("EF", 3)
expected = Series([4, np.nan, 7, np.nan, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = ser.str.rfind("EF", 3)
expected = Series([4, np.nan, 7, np.nan, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = ser.str.find("EF", 3, 6)
expected = Series([4, np.nan, -1, np.nan, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
result = ser.str.rfind("EF", 3, 6)
expected = Series([4, np.nan, -1, np.nan, -1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
# --------------------------------------------------------------------------------------
# str.translate
# --------------------------------------------------------------------------------------
@pytest.mark.parametrize(
"infer_string", [False, pytest.param(True, marks=td.skip_if_no("pyarrow"))]
)
def test_translate(index_or_series, any_string_dtype, infer_string):
obj = index_or_series(
["abcdefg", "abcc", "cdddfg", "cdefggg"], dtype=any_string_dtype
)
table = str.maketrans("abc", "cde")
result = obj.str.translate(table)
expected = index_or_series(
["cdedefg", "cdee", "edddfg", "edefggg"], dtype=any_string_dtype
)
tm.assert_equal(result, expected)
def test_translate_mixed_object():
# Series with non-string values
s = Series(["a", "b", "c", 1.2])
table = str.maketrans("abc", "cde")
expected = Series(["c", "d", "e", np.nan], dtype=object)
result = s.str.translate(table)
tm.assert_series_equal(result, expected)
# --------------------------------------------------------------------------------------
def test_flags_kwarg(any_string_dtype):
data = {
"Dave": "dave@google.com",
"Steve": "steve@gmail.com",
"Rob": "rob@gmail.com",
"Wes": np.nan,
}
data = Series(data, dtype=any_string_dtype)
pat = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"
use_pyarrow = using_pyarrow(any_string_dtype)
result = data.str.extract(pat, flags=re.IGNORECASE, expand=True)
assert result.iloc[0].tolist() == ["dave", "google", "com"]
with tm.maybe_produces_warning(PerformanceWarning, use_pyarrow):
result = data.str.match(pat, flags=re.IGNORECASE)
assert result.iloc[0]
with tm.maybe_produces_warning(PerformanceWarning, use_pyarrow):
result = data.str.fullmatch(pat, flags=re.IGNORECASE)
assert result.iloc[0]
result = data.str.findall(pat, flags=re.IGNORECASE)
assert result.iloc[0][0] == ("dave", "google", "com")
result = data.str.count(pat, flags=re.IGNORECASE)
assert result.iloc[0] == 1
msg = "has match groups"
with tm.assert_produces_warning(
UserWarning, match=msg, raise_on_extra_warnings=not use_pyarrow
):
result = data.str.contains(pat, flags=re.IGNORECASE)
assert result.iloc[0]

View File

@ -0,0 +1,53 @@
import numpy as np
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
_testing as tm,
)
def test_get_dummies(any_string_dtype):
s = Series(["a|b", "a|c", np.nan], dtype=any_string_dtype)
result = s.str.get_dummies("|")
expected = DataFrame([[1, 1, 0], [1, 0, 1], [0, 0, 0]], columns=list("abc"))
tm.assert_frame_equal(result, expected)
s = Series(["a;b", "a", 7], dtype=any_string_dtype)
result = s.str.get_dummies(";")
expected = DataFrame([[0, 1, 1], [0, 1, 0], [1, 0, 0]], columns=list("7ab"))
tm.assert_frame_equal(result, expected)
def test_get_dummies_index():
# GH9980, GH8028
idx = Index(["a|b", "a|c", "b|c"])
result = idx.str.get_dummies("|")
expected = MultiIndex.from_tuples(
[(1, 1, 0), (1, 0, 1), (0, 1, 1)], names=("a", "b", "c")
)
tm.assert_index_equal(result, expected)
def test_get_dummies_with_name_dummy(any_string_dtype):
# GH 12180
# Dummies named 'name' should work as expected
s = Series(["a", "b,name", "b"], dtype=any_string_dtype)
result = s.str.get_dummies(",")
expected = DataFrame([[1, 0, 0], [0, 1, 1], [0, 1, 0]], columns=["a", "b", "name"])
tm.assert_frame_equal(result, expected)
def test_get_dummies_with_name_dummy_index():
# GH 12180
# Dummies named 'name' should work as expected
idx = Index(["a|b", "name|c", "b|name"])
result = idx.str.get_dummies("|")
expected = MultiIndex.from_tuples(
[(1, 1, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1)], names=("a", "b", "c", "name")
)
tm.assert_index_equal(result, expected)

View File

@ -0,0 +1,734 @@
from datetime import datetime
import re
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
_testing as tm,
)
from pandas.tests.strings import (
_convert_na_value,
object_pyarrow_numpy,
)
@pytest.mark.parametrize("method", ["split", "rsplit"])
def test_split(any_string_dtype, method):
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
result = getattr(values.str, method)("_")
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
exp = _convert_na_value(values, exp)
tm.assert_series_equal(result, exp)
@pytest.mark.parametrize("method", ["split", "rsplit"])
def test_split_more_than_one_char(any_string_dtype, method):
# more than one char
values = Series(["a__b__c", "c__d__e", np.nan, "f__g__h"], dtype=any_string_dtype)
result = getattr(values.str, method)("__")
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
exp = _convert_na_value(values, exp)
tm.assert_series_equal(result, exp)
result = getattr(values.str, method)("__", expand=False)
tm.assert_series_equal(result, exp)
def test_split_more_regex_split(any_string_dtype):
# regex split
values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"], dtype=any_string_dtype)
result = values.str.split("[,_]")
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
exp = _convert_na_value(values, exp)
tm.assert_series_equal(result, exp)
def test_split_regex(any_string_dtype):
# GH 43563
# explicit regex = True split
values = Series("xxxjpgzzz.jpg", dtype=any_string_dtype)
result = values.str.split(r"\.jpg", regex=True)
exp = Series([["xxxjpgzzz", ""]])
tm.assert_series_equal(result, exp)
def test_split_regex_explicit(any_string_dtype):
# explicit regex = True split with compiled regex
regex_pat = re.compile(r".jpg")
values = Series("xxxjpgzzz.jpg", dtype=any_string_dtype)
result = values.str.split(regex_pat)
exp = Series([["xx", "zzz", ""]])
tm.assert_series_equal(result, exp)
# explicit regex = False split
result = values.str.split(r"\.jpg", regex=False)
exp = Series([["xxxjpgzzz.jpg"]])
tm.assert_series_equal(result, exp)
# non explicit regex split, pattern length == 1
result = values.str.split(r".")
exp = Series([["xxxjpgzzz", "jpg"]])
tm.assert_series_equal(result, exp)
# non explicit regex split, pattern length != 1
result = values.str.split(r".jpg")
exp = Series([["xx", "zzz", ""]])
tm.assert_series_equal(result, exp)
# regex=False with pattern compiled regex raises error
with pytest.raises(
ValueError,
match="Cannot use a compiled regex as replacement pattern with regex=False",
):
values.str.split(regex_pat, regex=False)
@pytest.mark.parametrize("expand", [None, False])
@pytest.mark.parametrize("method", ["split", "rsplit"])
def test_split_object_mixed(expand, method):
mixed = Series(["a_b_c", np.nan, "d_e_f", True, datetime.today(), None, 1, 2.0])
result = getattr(mixed.str, method)("_", expand=expand)
exp = Series(
[
["a", "b", "c"],
np.nan,
["d", "e", "f"],
np.nan,
np.nan,
None,
np.nan,
np.nan,
]
)
assert isinstance(result, Series)
tm.assert_almost_equal(result, exp)
@pytest.mark.parametrize("method", ["split", "rsplit"])
@pytest.mark.parametrize("n", [None, 0])
def test_split_n(any_string_dtype, method, n):
s = Series(["a b", pd.NA, "b c"], dtype=any_string_dtype)
expected = Series([["a", "b"], pd.NA, ["b", "c"]])
result = getattr(s.str, method)(" ", n=n)
expected = _convert_na_value(s, expected)
tm.assert_series_equal(result, expected)
def test_rsplit(any_string_dtype):
# regex split is not supported by rsplit
values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"], dtype=any_string_dtype)
result = values.str.rsplit("[,_]")
exp = Series([["a,b_c"], ["c_d,e"], np.nan, ["f,g,h"]])
exp = _convert_na_value(values, exp)
tm.assert_series_equal(result, exp)
def test_rsplit_max_number(any_string_dtype):
# setting max number of splits, make sure it's from reverse
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
result = values.str.rsplit("_", n=1)
exp = Series([["a_b", "c"], ["c_d", "e"], np.nan, ["f_g", "h"]])
exp = _convert_na_value(values, exp)
tm.assert_series_equal(result, exp)
def test_split_blank_string(any_string_dtype):
# expand blank split GH 20067
values = Series([""], name="test", dtype=any_string_dtype)
result = values.str.split(expand=True)
exp = DataFrame([[]], dtype=any_string_dtype) # NOTE: this is NOT an empty df
tm.assert_frame_equal(result, exp)
def test_split_blank_string_with_non_empty(any_string_dtype):
values = Series(["a b c", "a b", "", " "], name="test", dtype=any_string_dtype)
result = values.str.split(expand=True)
exp = DataFrame(
[
["a", "b", "c"],
["a", "b", None],
[None, None, None],
[None, None, None],
],
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, exp)
@pytest.mark.parametrize("method", ["split", "rsplit"])
def test_split_noargs(any_string_dtype, method):
# #1859
s = Series(["Wes McKinney", "Travis Oliphant"], dtype=any_string_dtype)
result = getattr(s.str, method)()
expected = ["Travis", "Oliphant"]
assert result[1] == expected
@pytest.mark.parametrize(
"data, pat",
[
(["bd asdf jfg", "kjasdflqw asdfnfk"], None),
(["bd asdf jfg", "kjasdflqw asdfnfk"], "asdf"),
(["bd_asdf_jfg", "kjasdflqw_asdfnfk"], "_"),
],
)
@pytest.mark.parametrize("n", [-1, 0])
def test_split_maxsplit(data, pat, any_string_dtype, n):
# re.split 0, str.split -1
s = Series(data, dtype=any_string_dtype)
result = s.str.split(pat=pat, n=n)
xp = s.str.split(pat=pat)
tm.assert_series_equal(result, xp)
@pytest.mark.parametrize(
"data, pat, expected",
[
(
["split once", "split once too!"],
None,
Series({0: ["split", "once"], 1: ["split", "once too!"]}),
),
(
["split_once", "split_once_too!"],
"_",
Series({0: ["split", "once"], 1: ["split", "once_too!"]}),
),
],
)
def test_split_no_pat_with_nonzero_n(data, pat, expected, any_string_dtype):
s = Series(data, dtype=any_string_dtype)
result = s.str.split(pat=pat, n=1)
tm.assert_series_equal(expected, result, check_index_type=False)
def test_split_to_dataframe_no_splits(any_string_dtype):
s = Series(["nosplit", "alsonosplit"], dtype=any_string_dtype)
result = s.str.split("_", expand=True)
exp = DataFrame({0: Series(["nosplit", "alsonosplit"], dtype=any_string_dtype)})
tm.assert_frame_equal(result, exp)
def test_split_to_dataframe(any_string_dtype):
s = Series(["some_equal_splits", "with_no_nans"], dtype=any_string_dtype)
result = s.str.split("_", expand=True)
exp = DataFrame(
{0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]},
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, exp)
def test_split_to_dataframe_unequal_splits(any_string_dtype):
s = Series(
["some_unequal_splits", "one_of_these_things_is_not"], dtype=any_string_dtype
)
result = s.str.split("_", expand=True)
exp = DataFrame(
{
0: ["some", "one"],
1: ["unequal", "of"],
2: ["splits", "these"],
3: [None, "things"],
4: [None, "is"],
5: [None, "not"],
},
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, exp)
def test_split_to_dataframe_with_index(any_string_dtype):
s = Series(
["some_splits", "with_index"], index=["preserve", "me"], dtype=any_string_dtype
)
result = s.str.split("_", expand=True)
exp = DataFrame(
{0: ["some", "with"], 1: ["splits", "index"]},
index=["preserve", "me"],
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, exp)
with pytest.raises(ValueError, match="expand must be"):
s.str.split("_", expand="not_a_boolean")
def test_split_to_multiindex_expand_no_splits():
# https://github.com/pandas-dev/pandas/issues/23677
idx = Index(["nosplit", "alsonosplit", np.nan])
result = idx.str.split("_", expand=True)
exp = idx
tm.assert_index_equal(result, exp)
assert result.nlevels == 1
def test_split_to_multiindex_expand():
idx = Index(["some_equal_splits", "with_no_nans", np.nan, None])
result = idx.str.split("_", expand=True)
exp = MultiIndex.from_tuples(
[
("some", "equal", "splits"),
("with", "no", "nans"),
[np.nan, np.nan, np.nan],
[None, None, None],
]
)
tm.assert_index_equal(result, exp)
assert result.nlevels == 3
def test_split_to_multiindex_expand_unequal_splits():
idx = Index(["some_unequal_splits", "one_of_these_things_is_not", np.nan, None])
result = idx.str.split("_", expand=True)
exp = MultiIndex.from_tuples(
[
("some", "unequal", "splits", np.nan, np.nan, np.nan),
("one", "of", "these", "things", "is", "not"),
(np.nan, np.nan, np.nan, np.nan, np.nan, np.nan),
(None, None, None, None, None, None),
]
)
tm.assert_index_equal(result, exp)
assert result.nlevels == 6
with pytest.raises(ValueError, match="expand must be"):
idx.str.split("_", expand="not_a_boolean")
def test_rsplit_to_dataframe_expand_no_splits(any_string_dtype):
s = Series(["nosplit", "alsonosplit"], dtype=any_string_dtype)
result = s.str.rsplit("_", expand=True)
exp = DataFrame({0: Series(["nosplit", "alsonosplit"])}, dtype=any_string_dtype)
tm.assert_frame_equal(result, exp)
def test_rsplit_to_dataframe_expand(any_string_dtype):
s = Series(["some_equal_splits", "with_no_nans"], dtype=any_string_dtype)
result = s.str.rsplit("_", expand=True)
exp = DataFrame(
{0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]},
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, exp)
result = s.str.rsplit("_", expand=True, n=2)
exp = DataFrame(
{0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]},
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, exp)
result = s.str.rsplit("_", expand=True, n=1)
exp = DataFrame(
{0: ["some_equal", "with_no"], 1: ["splits", "nans"]}, dtype=any_string_dtype
)
tm.assert_frame_equal(result, exp)
def test_rsplit_to_dataframe_expand_with_index(any_string_dtype):
s = Series(
["some_splits", "with_index"], index=["preserve", "me"], dtype=any_string_dtype
)
result = s.str.rsplit("_", expand=True)
exp = DataFrame(
{0: ["some", "with"], 1: ["splits", "index"]},
index=["preserve", "me"],
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, exp)
def test_rsplit_to_multiindex_expand_no_split():
idx = Index(["nosplit", "alsonosplit"])
result = idx.str.rsplit("_", expand=True)
exp = idx
tm.assert_index_equal(result, exp)
assert result.nlevels == 1
def test_rsplit_to_multiindex_expand():
idx = Index(["some_equal_splits", "with_no_nans"])
result = idx.str.rsplit("_", expand=True)
exp = MultiIndex.from_tuples([("some", "equal", "splits"), ("with", "no", "nans")])
tm.assert_index_equal(result, exp)
assert result.nlevels == 3
def test_rsplit_to_multiindex_expand_n():
idx = Index(["some_equal_splits", "with_no_nans"])
result = idx.str.rsplit("_", expand=True, n=1)
exp = MultiIndex.from_tuples([("some_equal", "splits"), ("with_no", "nans")])
tm.assert_index_equal(result, exp)
assert result.nlevels == 2
def test_split_nan_expand(any_string_dtype):
# gh-18450
s = Series(["foo,bar,baz", np.nan], dtype=any_string_dtype)
result = s.str.split(",", expand=True)
exp = DataFrame(
[["foo", "bar", "baz"], [np.nan, np.nan, np.nan]], dtype=any_string_dtype
)
tm.assert_frame_equal(result, exp)
# check that these are actually np.nan/pd.NA and not None
# TODO see GH 18463
# tm.assert_frame_equal does not differentiate
if any_string_dtype in object_pyarrow_numpy:
assert all(np.isnan(x) for x in result.iloc[1])
else:
assert all(x is pd.NA for x in result.iloc[1])
def test_split_with_name_series(any_string_dtype):
# GH 12617
# should preserve name
s = Series(["a,b", "c,d"], name="xxx", dtype=any_string_dtype)
res = s.str.split(",")
exp = Series([["a", "b"], ["c", "d"]], name="xxx")
tm.assert_series_equal(res, exp)
res = s.str.split(",", expand=True)
exp = DataFrame([["a", "b"], ["c", "d"]], dtype=any_string_dtype)
tm.assert_frame_equal(res, exp)
def test_split_with_name_index():
# GH 12617
idx = Index(["a,b", "c,d"], name="xxx")
res = idx.str.split(",")
exp = Index([["a", "b"], ["c", "d"]], name="xxx")
assert res.nlevels == 1
tm.assert_index_equal(res, exp)
res = idx.str.split(",", expand=True)
exp = MultiIndex.from_tuples([("a", "b"), ("c", "d")])
assert res.nlevels == 2
tm.assert_index_equal(res, exp)
@pytest.mark.parametrize(
"method, exp",
[
[
"partition",
[
("a", "__", "b__c"),
("c", "__", "d__e"),
np.nan,
("f", "__", "g__h"),
None,
],
],
[
"rpartition",
[
("a__b", "__", "c"),
("c__d", "__", "e"),
np.nan,
("f__g", "__", "h"),
None,
],
],
],
)
def test_partition_series_more_than_one_char(method, exp, any_string_dtype):
# https://github.com/pandas-dev/pandas/issues/23558
# more than one char
s = Series(["a__b__c", "c__d__e", np.nan, "f__g__h", None], dtype=any_string_dtype)
result = getattr(s.str, method)("__", expand=False)
expected = Series(exp)
expected = _convert_na_value(s, expected)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"method, exp",
[
[
"partition",
[("a", " ", "b c"), ("c", " ", "d e"), np.nan, ("f", " ", "g h"), None],
],
[
"rpartition",
[("a b", " ", "c"), ("c d", " ", "e"), np.nan, ("f g", " ", "h"), None],
],
],
)
def test_partition_series_none(any_string_dtype, method, exp):
# https://github.com/pandas-dev/pandas/issues/23558
# None
s = Series(["a b c", "c d e", np.nan, "f g h", None], dtype=any_string_dtype)
result = getattr(s.str, method)(expand=False)
expected = Series(exp)
expected = _convert_na_value(s, expected)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"method, exp",
[
[
"partition",
[("abc", "", ""), ("cde", "", ""), np.nan, ("fgh", "", ""), None],
],
[
"rpartition",
[("", "", "abc"), ("", "", "cde"), np.nan, ("", "", "fgh"), None],
],
],
)
def test_partition_series_not_split(any_string_dtype, method, exp):
# https://github.com/pandas-dev/pandas/issues/23558
# Not split
s = Series(["abc", "cde", np.nan, "fgh", None], dtype=any_string_dtype)
result = getattr(s.str, method)("_", expand=False)
expected = Series(exp)
expected = _convert_na_value(s, expected)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"method, exp",
[
[
"partition",
[("a", "_", "b_c"), ("c", "_", "d_e"), np.nan, ("f", "_", "g_h")],
],
[
"rpartition",
[("a_b", "_", "c"), ("c_d", "_", "e"), np.nan, ("f_g", "_", "h")],
],
],
)
def test_partition_series_unicode(any_string_dtype, method, exp):
# https://github.com/pandas-dev/pandas/issues/23558
# unicode
s = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
result = getattr(s.str, method)("_", expand=False)
expected = Series(exp)
expected = _convert_na_value(s, expected)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("method", ["partition", "rpartition"])
def test_partition_series_stdlib(any_string_dtype, method):
# https://github.com/pandas-dev/pandas/issues/23558
# compare to standard lib
s = Series(["A_B_C", "B_C_D", "E_F_G", "EFGHEF"], dtype=any_string_dtype)
result = getattr(s.str, method)("_", expand=False).tolist()
assert result == [getattr(v, method)("_") for v in s]
@pytest.mark.parametrize(
"method, expand, exp, exp_levels",
[
[
"partition",
False,
np.array(
[("a", "_", "b_c"), ("c", "_", "d_e"), ("f", "_", "g_h"), np.nan, None],
dtype=object,
),
1,
],
[
"rpartition",
False,
np.array(
[("a_b", "_", "c"), ("c_d", "_", "e"), ("f_g", "_", "h"), np.nan, None],
dtype=object,
),
1,
],
],
)
def test_partition_index(method, expand, exp, exp_levels):
# https://github.com/pandas-dev/pandas/issues/23558
values = Index(["a_b_c", "c_d_e", "f_g_h", np.nan, None])
result = getattr(values.str, method)("_", expand=expand)
exp = Index(exp)
tm.assert_index_equal(result, exp)
assert result.nlevels == exp_levels
@pytest.mark.parametrize(
"method, exp",
[
[
"partition",
{
0: ["a", "c", np.nan, "f", None],
1: ["_", "_", np.nan, "_", None],
2: ["b_c", "d_e", np.nan, "g_h", None],
},
],
[
"rpartition",
{
0: ["a_b", "c_d", np.nan, "f_g", None],
1: ["_", "_", np.nan, "_", None],
2: ["c", "e", np.nan, "h", None],
},
],
],
)
def test_partition_to_dataframe(any_string_dtype, method, exp):
# https://github.com/pandas-dev/pandas/issues/23558
s = Series(["a_b_c", "c_d_e", np.nan, "f_g_h", None], dtype=any_string_dtype)
result = getattr(s.str, method)("_")
expected = DataFrame(
exp,
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"method, exp",
[
[
"partition",
{
0: ["a", "c", np.nan, "f", None],
1: ["_", "_", np.nan, "_", None],
2: ["b_c", "d_e", np.nan, "g_h", None],
},
],
[
"rpartition",
{
0: ["a_b", "c_d", np.nan, "f_g", None],
1: ["_", "_", np.nan, "_", None],
2: ["c", "e", np.nan, "h", None],
},
],
],
)
def test_partition_to_dataframe_from_series(any_string_dtype, method, exp):
# https://github.com/pandas-dev/pandas/issues/23558
s = Series(["a_b_c", "c_d_e", np.nan, "f_g_h", None], dtype=any_string_dtype)
result = getattr(s.str, method)("_", expand=True)
expected = DataFrame(
exp,
dtype=any_string_dtype,
)
tm.assert_frame_equal(result, expected)
def test_partition_with_name(any_string_dtype):
# GH 12617
s = Series(["a,b", "c,d"], name="xxx", dtype=any_string_dtype)
result = s.str.partition(",")
expected = DataFrame(
{0: ["a", "c"], 1: [",", ","], 2: ["b", "d"]}, dtype=any_string_dtype
)
tm.assert_frame_equal(result, expected)
def test_partition_with_name_expand(any_string_dtype):
# GH 12617
# should preserve name
s = Series(["a,b", "c,d"], name="xxx", dtype=any_string_dtype)
result = s.str.partition(",", expand=False)
expected = Series([("a", ",", "b"), ("c", ",", "d")], name="xxx")
tm.assert_series_equal(result, expected)
def test_partition_index_with_name():
idx = Index(["a,b", "c,d"], name="xxx")
result = idx.str.partition(",")
expected = MultiIndex.from_tuples([("a", ",", "b"), ("c", ",", "d")])
assert result.nlevels == 3
tm.assert_index_equal(result, expected)
def test_partition_index_with_name_expand_false():
idx = Index(["a,b", "c,d"], name="xxx")
# should preserve name
result = idx.str.partition(",", expand=False)
expected = Index(np.array([("a", ",", "b"), ("c", ",", "d")]), name="xxx")
assert result.nlevels == 1
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("method", ["partition", "rpartition"])
def test_partition_sep_kwarg(any_string_dtype, method):
# GH 22676; depr kwarg "pat" in favor of "sep"
s = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
expected = getattr(s.str, method)(sep="_")
result = getattr(s.str, method)("_")
tm.assert_frame_equal(result, expected)
def test_get():
ser = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
result = ser.str.split("_").str.get(1)
expected = Series(["b", "d", np.nan, "g"], dtype=object)
tm.assert_series_equal(result, expected)
def test_get_mixed_object():
ser = Series(["a_b_c", np.nan, "c_d_e", True, datetime.today(), None, 1, 2.0])
result = ser.str.split("_").str.get(1)
expected = Series(
["b", np.nan, "d", np.nan, np.nan, None, np.nan, np.nan], dtype=object
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("idx", [2, -3])
def test_get_bounds(idx):
ser = Series(["1_2_3_4_5", "6_7_8_9_10", "11_12"])
result = ser.str.split("_").str.get(idx)
expected = Series(["3", "8", np.nan], dtype=object)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"idx, exp", [[2, [3, 3, np.nan, "b"]], [-1, [3, 3, np.nan, np.nan]]]
)
def test_get_complex(idx, exp):
# GH 20671, getting value not in dict raising `KeyError`
ser = Series([(1, 2, 3), [1, 2, 3], {1, 2, 3}, {1: "a", 2: "b", 3: "c"}])
result = ser.str.get(idx)
expected = Series(exp)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("to_type", [tuple, list, np.array])
def test_get_complex_nested(to_type):
ser = Series([to_type([to_type([1, 2])])])
result = ser.str.get(0)
expected = Series([to_type([1, 2])])
tm.assert_series_equal(result, expected)
result = ser.str.get(1)
expected = Series([np.nan])
tm.assert_series_equal(result, expected)
def test_get_strings(any_string_dtype):
ser = Series(["a", "ab", np.nan, "abc"], dtype=any_string_dtype)
result = ser.str.get(2)
expected = Series([np.nan, np.nan, np.nan, "c"], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)

View File

@ -0,0 +1,112 @@
import numpy as np
import pytest
from pandas._libs import lib
from pandas import (
NA,
DataFrame,
Series,
_testing as tm,
option_context,
)
@pytest.mark.filterwarnings("ignore:Falling back")
def test_string_array(nullable_string_dtype, any_string_method):
method_name, args, kwargs = any_string_method
data = ["a", "bb", np.nan, "ccc"]
a = Series(data, dtype=object)
b = Series(data, dtype=nullable_string_dtype)
if method_name == "decode":
with pytest.raises(TypeError, match="a bytes-like object is required"):
getattr(b.str, method_name)(*args, **kwargs)
return
expected = getattr(a.str, method_name)(*args, **kwargs)
result = getattr(b.str, method_name)(*args, **kwargs)
if isinstance(expected, Series):
if expected.dtype == "object" and lib.is_string_array(
expected.dropna().values,
):
assert result.dtype == nullable_string_dtype
result = result.astype(object)
elif expected.dtype == "object" and lib.is_bool_array(
expected.values, skipna=True
):
assert result.dtype == "boolean"
result = result.astype(object)
elif expected.dtype == "bool":
assert result.dtype == "boolean"
result = result.astype("bool")
elif expected.dtype == "float" and expected.isna().any():
assert result.dtype == "Int64"
result = result.astype("float")
if expected.dtype == object:
# GH#18463
expected[expected.isna()] = NA
elif isinstance(expected, DataFrame):
columns = expected.select_dtypes(include="object").columns
assert all(result[columns].dtypes == nullable_string_dtype)
result[columns] = result[columns].astype(object)
with option_context("future.no_silent_downcasting", True):
expected[columns] = expected[columns].fillna(NA) # GH#18463
tm.assert_equal(result, expected)
@pytest.mark.parametrize(
"method,expected",
[
("count", [2, None]),
("find", [0, None]),
("index", [0, None]),
("rindex", [2, None]),
],
)
def test_string_array_numeric_integer_array(nullable_string_dtype, method, expected):
s = Series(["aba", None], dtype=nullable_string_dtype)
result = getattr(s.str, method)("a")
expected = Series(expected, dtype="Int64")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"method,expected",
[
("isdigit", [False, None, True]),
("isalpha", [True, None, False]),
("isalnum", [True, None, True]),
("isnumeric", [False, None, True]),
],
)
def test_string_array_boolean_array(nullable_string_dtype, method, expected):
s = Series(["a", None, "1"], dtype=nullable_string_dtype)
result = getattr(s.str, method)()
expected = Series(expected, dtype="boolean")
tm.assert_series_equal(result, expected)
def test_string_array_extract(nullable_string_dtype):
# https://github.com/pandas-dev/pandas/issues/30969
# Only expand=False & multiple groups was failing
a = Series(["a1", "b2", "cc"], dtype=nullable_string_dtype)
b = Series(["a1", "b2", "cc"], dtype="object")
pat = r"(\w)(\d)"
result = a.str.extract(pat, expand=False)
expected = b.str.extract(pat, expand=False)
expected = expected.fillna(NA) # GH#18463
assert all(result.dtypes == nullable_string_dtype)
result = result.astype(object)
tm.assert_equal(result, expected)

View File

@ -0,0 +1,720 @@
from datetime import (
datetime,
timedelta,
)
import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
)
import pandas._testing as tm
from pandas.core.strings.accessor import StringMethods
from pandas.tests.strings import object_pyarrow_numpy
@pytest.mark.parametrize("pattern", [0, True, Series(["foo", "bar"])])
def test_startswith_endswith_non_str_patterns(pattern):
# GH3485
ser = Series(["foo", "bar"])
msg = f"expected a string or tuple, not {type(pattern).__name__}"
with pytest.raises(TypeError, match=msg):
ser.str.startswith(pattern)
with pytest.raises(TypeError, match=msg):
ser.str.endswith(pattern)
def test_iter_raises():
# GH 54173
ser = Series(["foo", "bar"])
with pytest.raises(TypeError, match="'StringMethods' object is not iterable"):
iter(ser.str)
# test integer/float dtypes (inferred by constructor) and mixed
def test_count(any_string_dtype):
ser = Series(["foo", "foofoo", np.nan, "foooofooofommmfoo"], dtype=any_string_dtype)
result = ser.str.count("f[o]+")
expected_dtype = np.float64 if any_string_dtype in object_pyarrow_numpy else "Int64"
expected = Series([1, 2, np.nan, 4], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
def test_count_mixed_object():
ser = Series(
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
dtype=object,
)
result = ser.str.count("a")
expected = Series([1, np.nan, 0, np.nan, np.nan, 0, np.nan, np.nan, np.nan])
tm.assert_series_equal(result, expected)
def test_repeat(any_string_dtype):
ser = Series(["a", "b", np.nan, "c", np.nan, "d"], dtype=any_string_dtype)
result = ser.str.repeat(3)
expected = Series(
["aaa", "bbb", np.nan, "ccc", np.nan, "ddd"], dtype=any_string_dtype
)
tm.assert_series_equal(result, expected)
result = ser.str.repeat([1, 2, 3, 4, 5, 6])
expected = Series(
["a", "bb", np.nan, "cccc", np.nan, "dddddd"], dtype=any_string_dtype
)
tm.assert_series_equal(result, expected)
def test_repeat_mixed_object():
ser = Series(["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0])
result = ser.str.repeat(3)
expected = Series(
["aaa", np.nan, "bbb", np.nan, np.nan, "foofoofoo", None, np.nan, np.nan],
dtype=object,
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("arg, repeat", [[None, 4], ["b", None]])
def test_repeat_with_null(any_string_dtype, arg, repeat):
# GH: 31632
ser = Series(["a", arg], dtype=any_string_dtype)
result = ser.str.repeat([3, repeat])
expected = Series(["aaa", None], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
def test_empty_str_methods(any_string_dtype):
empty_str = empty = Series(dtype=any_string_dtype)
if any_string_dtype in object_pyarrow_numpy:
empty_int = Series(dtype="int64")
empty_bool = Series(dtype=bool)
else:
empty_int = Series(dtype="Int64")
empty_bool = Series(dtype="boolean")
empty_object = Series(dtype=object)
empty_bytes = Series(dtype=object)
empty_df = DataFrame()
# GH7241
# (extract) on empty series
tm.assert_series_equal(empty_str, empty.str.cat(empty))
assert "" == empty.str.cat()
tm.assert_series_equal(empty_str, empty.str.title())
tm.assert_series_equal(empty_int, empty.str.count("a"))
tm.assert_series_equal(empty_bool, empty.str.contains("a"))
tm.assert_series_equal(empty_bool, empty.str.startswith("a"))
tm.assert_series_equal(empty_bool, empty.str.endswith("a"))
tm.assert_series_equal(empty_str, empty.str.lower())
tm.assert_series_equal(empty_str, empty.str.upper())
tm.assert_series_equal(empty_str, empty.str.replace("a", "b"))
tm.assert_series_equal(empty_str, empty.str.repeat(3))
tm.assert_series_equal(empty_bool, empty.str.match("^a"))
tm.assert_frame_equal(
DataFrame(columns=[0], dtype=any_string_dtype),
empty.str.extract("()", expand=True),
)
tm.assert_frame_equal(
DataFrame(columns=[0, 1], dtype=any_string_dtype),
empty.str.extract("()()", expand=True),
)
tm.assert_series_equal(empty_str, empty.str.extract("()", expand=False))
tm.assert_frame_equal(
DataFrame(columns=[0, 1], dtype=any_string_dtype),
empty.str.extract("()()", expand=False),
)
tm.assert_frame_equal(empty_df.set_axis([], axis=1), empty.str.get_dummies())
tm.assert_series_equal(empty_str, empty_str.str.join(""))
tm.assert_series_equal(empty_int, empty.str.len())
tm.assert_series_equal(empty_object, empty_str.str.findall("a"))
tm.assert_series_equal(empty_int, empty.str.find("a"))
tm.assert_series_equal(empty_int, empty.str.rfind("a"))
tm.assert_series_equal(empty_str, empty.str.pad(42))
tm.assert_series_equal(empty_str, empty.str.center(42))
tm.assert_series_equal(empty_object, empty.str.split("a"))
tm.assert_series_equal(empty_object, empty.str.rsplit("a"))
tm.assert_series_equal(empty_object, empty.str.partition("a", expand=False))
tm.assert_frame_equal(empty_df, empty.str.partition("a"))
tm.assert_series_equal(empty_object, empty.str.rpartition("a", expand=False))
tm.assert_frame_equal(empty_df, empty.str.rpartition("a"))
tm.assert_series_equal(empty_str, empty.str.slice(stop=1))
tm.assert_series_equal(empty_str, empty.str.slice(step=1))
tm.assert_series_equal(empty_str, empty.str.strip())
tm.assert_series_equal(empty_str, empty.str.lstrip())
tm.assert_series_equal(empty_str, empty.str.rstrip())
tm.assert_series_equal(empty_str, empty.str.wrap(42))
tm.assert_series_equal(empty_str, empty.str.get(0))
tm.assert_series_equal(empty_object, empty_bytes.str.decode("ascii"))
tm.assert_series_equal(empty_bytes, empty.str.encode("ascii"))
# ismethods should always return boolean (GH 29624)
tm.assert_series_equal(empty_bool, empty.str.isalnum())
tm.assert_series_equal(empty_bool, empty.str.isalpha())
tm.assert_series_equal(empty_bool, empty.str.isdigit())
tm.assert_series_equal(empty_bool, empty.str.isspace())
tm.assert_series_equal(empty_bool, empty.str.islower())
tm.assert_series_equal(empty_bool, empty.str.isupper())
tm.assert_series_equal(empty_bool, empty.str.istitle())
tm.assert_series_equal(empty_bool, empty.str.isnumeric())
tm.assert_series_equal(empty_bool, empty.str.isdecimal())
tm.assert_series_equal(empty_str, empty.str.capitalize())
tm.assert_series_equal(empty_str, empty.str.swapcase())
tm.assert_series_equal(empty_str, empty.str.normalize("NFC"))
table = str.maketrans("a", "b")
tm.assert_series_equal(empty_str, empty.str.translate(table))
@pytest.mark.parametrize(
"method, expected",
[
("isalnum", [True, True, True, True, True, False, True, True, False, False]),
("isalpha", [True, True, True, False, False, False, True, False, False, False]),
(
"isdigit",
[False, False, False, True, False, False, False, True, False, False],
),
(
"isnumeric",
[False, False, False, True, False, False, False, True, False, False],
),
(
"isspace",
[False, False, False, False, False, False, False, False, False, True],
),
(
"islower",
[False, True, False, False, False, False, False, False, False, False],
),
(
"isupper",
[True, False, False, False, True, False, True, False, False, False],
),
(
"istitle",
[True, False, True, False, True, False, False, False, False, False],
),
],
)
def test_ismethods(method, expected, any_string_dtype):
ser = Series(
["A", "b", "Xy", "4", "3A", "", "TT", "55", "-", " "], dtype=any_string_dtype
)
expected_dtype = "bool" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series(expected, dtype=expected_dtype)
result = getattr(ser.str, method)()
tm.assert_series_equal(result, expected)
# compare with standard library
expected = [getattr(item, method)() for item in ser]
assert list(result) == expected
@pytest.mark.parametrize(
"method, expected",
[
("isnumeric", [False, True, True, False, True, True, False]),
("isdecimal", [False, True, False, False, False, True, False]),
],
)
def test_isnumeric_unicode(method, expected, any_string_dtype):
# 0x00bc: ¼ VULGAR FRACTION ONE QUARTER
# 0x2605: ★ not number
# 0x1378: ፸ ETHIOPIC NUMBER SEVENTY
# 0xFF13: Em 3 # noqa: RUF003
ser = Series(
["A", "3", "¼", "", "", "", "four"], dtype=any_string_dtype # noqa: RUF001
)
expected_dtype = "bool" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series(expected, dtype=expected_dtype)
result = getattr(ser.str, method)()
tm.assert_series_equal(result, expected)
# compare with standard library
expected = [getattr(item, method)() for item in ser]
assert list(result) == expected
@pytest.mark.parametrize(
"method, expected",
[
("isnumeric", [False, np.nan, True, False, np.nan, True, False]),
("isdecimal", [False, np.nan, False, False, np.nan, True, False]),
],
)
def test_isnumeric_unicode_missing(method, expected, any_string_dtype):
values = ["A", np.nan, "¼", "", np.nan, "", "four"] # noqa: RUF001
ser = Series(values, dtype=any_string_dtype)
expected_dtype = "object" if any_string_dtype in object_pyarrow_numpy else "boolean"
expected = Series(expected, dtype=expected_dtype)
result = getattr(ser.str, method)()
tm.assert_series_equal(result, expected)
def test_spilt_join_roundtrip(any_string_dtype):
ser = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype)
result = ser.str.split("_").str.join("_")
expected = ser.astype(object)
tm.assert_series_equal(result, expected)
def test_spilt_join_roundtrip_mixed_object():
ser = Series(
["a_b", np.nan, "asdf_cas_asdf", True, datetime.today(), "foo", None, 1, 2.0]
)
result = ser.str.split("_").str.join("_")
expected = Series(
["a_b", np.nan, "asdf_cas_asdf", np.nan, np.nan, "foo", None, np.nan, np.nan],
dtype=object,
)
tm.assert_series_equal(result, expected)
def test_len(any_string_dtype):
ser = Series(
["foo", "fooo", "fooooo", np.nan, "fooooooo", "foo\n", ""],
dtype=any_string_dtype,
)
result = ser.str.len()
expected_dtype = "float64" if any_string_dtype in object_pyarrow_numpy else "Int64"
expected = Series([3, 4, 6, np.nan, 8, 4, 1], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
def test_len_mixed():
ser = Series(
["a_b", np.nan, "asdf_cas_asdf", True, datetime.today(), "foo", None, 1, 2.0]
)
result = ser.str.len()
expected = Series([3, np.nan, 13, np.nan, np.nan, 3, np.nan, np.nan, np.nan])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"method,sub,start,end,expected",
[
("index", "EF", None, None, [4, 3, 1, 0]),
("rindex", "EF", None, None, [4, 5, 7, 4]),
("index", "EF", 3, None, [4, 3, 7, 4]),
("rindex", "EF", 3, None, [4, 5, 7, 4]),
("index", "E", 4, 8, [4, 5, 7, 4]),
("rindex", "E", 0, 5, [4, 3, 1, 4]),
],
)
def test_index(method, sub, start, end, index_or_series, any_string_dtype, expected):
obj = index_or_series(
["ABCDEFG", "BCDEFEF", "DEFGHIJEF", "EFGHEF"], dtype=any_string_dtype
)
expected_dtype = np.int64 if any_string_dtype in object_pyarrow_numpy else "Int64"
expected = index_or_series(expected, dtype=expected_dtype)
result = getattr(obj.str, method)(sub, start, end)
if index_or_series is Series:
tm.assert_series_equal(result, expected)
else:
tm.assert_index_equal(result, expected)
# compare with standard library
expected = [getattr(item, method)(sub, start, end) for item in obj]
assert list(result) == expected
def test_index_not_found_raises(index_or_series, any_string_dtype):
obj = index_or_series(
["ABCDEFG", "BCDEFEF", "DEFGHIJEF", "EFGHEF"], dtype=any_string_dtype
)
with pytest.raises(ValueError, match="substring not found"):
obj.str.index("DE")
@pytest.mark.parametrize("method", ["index", "rindex"])
def test_index_wrong_type_raises(index_or_series, any_string_dtype, method):
obj = index_or_series([], dtype=any_string_dtype)
msg = "expected a string object, not int"
with pytest.raises(TypeError, match=msg):
getattr(obj.str, method)(0)
@pytest.mark.parametrize(
"method, exp",
[
["index", [1, 1, 0]],
["rindex", [3, 1, 2]],
],
)
def test_index_missing(any_string_dtype, method, exp):
ser = Series(["abcb", "ab", "bcbe", np.nan], dtype=any_string_dtype)
expected_dtype = np.float64 if any_string_dtype in object_pyarrow_numpy else "Int64"
result = getattr(ser.str, method)("b")
expected = Series(exp + [np.nan], dtype=expected_dtype)
tm.assert_series_equal(result, expected)
def test_pipe_failures(any_string_dtype):
# #2119
ser = Series(["A|B|C"], dtype=any_string_dtype)
result = ser.str.split("|")
expected = Series([["A", "B", "C"]], dtype=object)
tm.assert_series_equal(result, expected)
result = ser.str.replace("|", " ", regex=False)
expected = Series(["A B C"], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"start, stop, step, expected",
[
(2, 5, None, ["foo", "bar", np.nan, "baz"]),
(0, 3, -1, ["", "", np.nan, ""]),
(None, None, -1, ["owtoofaa", "owtrabaa", np.nan, "xuqzabaa"]),
(3, 10, 2, ["oto", "ato", np.nan, "aqx"]),
(3, 0, -1, ["ofa", "aba", np.nan, "aba"]),
],
)
def test_slice(start, stop, step, expected, any_string_dtype):
ser = Series(["aafootwo", "aabartwo", np.nan, "aabazqux"], dtype=any_string_dtype)
result = ser.str.slice(start, stop, step)
expected = Series(expected, dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"start, stop, step, expected",
[
(2, 5, None, ["foo", np.nan, "bar", np.nan, np.nan, None, np.nan, np.nan]),
(4, 1, -1, ["oof", np.nan, "rab", np.nan, np.nan, None, np.nan, np.nan]),
],
)
def test_slice_mixed_object(start, stop, step, expected):
ser = Series(["aafootwo", np.nan, "aabartwo", True, datetime.today(), None, 1, 2.0])
result = ser.str.slice(start, stop, step)
expected = Series(expected, dtype=object)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"start,stop,repl,expected",
[
(2, 3, None, ["shrt", "a it longer", "evnlongerthanthat", "", np.nan]),
(2, 3, "z", ["shzrt", "a zit longer", "evznlongerthanthat", "z", np.nan]),
(2, 2, "z", ["shzort", "a zbit longer", "evzenlongerthanthat", "z", np.nan]),
(2, 1, "z", ["shzort", "a zbit longer", "evzenlongerthanthat", "z", np.nan]),
(-1, None, "z", ["shorz", "a bit longez", "evenlongerthanthaz", "z", np.nan]),
(None, -2, "z", ["zrt", "zer", "zat", "z", np.nan]),
(6, 8, "z", ["shortz", "a bit znger", "evenlozerthanthat", "z", np.nan]),
(-10, 3, "z", ["zrt", "a zit longer", "evenlongzerthanthat", "z", np.nan]),
],
)
def test_slice_replace(start, stop, repl, expected, any_string_dtype):
ser = Series(
["short", "a bit longer", "evenlongerthanthat", "", np.nan],
dtype=any_string_dtype,
)
expected = Series(expected, dtype=any_string_dtype)
result = ser.str.slice_replace(start, stop, repl)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"method, exp",
[
["strip", ["aa", "bb", np.nan, "cc"]],
["lstrip", ["aa ", "bb \n", np.nan, "cc "]],
["rstrip", [" aa", " bb", np.nan, "cc"]],
],
)
def test_strip_lstrip_rstrip(any_string_dtype, method, exp):
ser = Series([" aa ", " bb \n", np.nan, "cc "], dtype=any_string_dtype)
result = getattr(ser.str, method)()
expected = Series(exp, dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"method, exp",
[
["strip", ["aa", np.nan, "bb"]],
["lstrip", ["aa ", np.nan, "bb \t\n"]],
["rstrip", [" aa", np.nan, " bb"]],
],
)
def test_strip_lstrip_rstrip_mixed_object(method, exp):
ser = Series([" aa ", np.nan, " bb \t\n", True, datetime.today(), None, 1, 2.0])
result = getattr(ser.str, method)()
expected = Series(exp + [np.nan, np.nan, None, np.nan, np.nan], dtype=object)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"method, exp",
[
["strip", ["ABC", " BNSD", "LDFJH "]],
["lstrip", ["ABCxx", " BNSD", "LDFJH xx"]],
["rstrip", ["xxABC", "xx BNSD", "LDFJH "]],
],
)
def test_strip_lstrip_rstrip_args(any_string_dtype, method, exp):
ser = Series(["xxABCxx", "xx BNSD", "LDFJH xx"], dtype=any_string_dtype)
result = getattr(ser.str, method)("x")
expected = Series(exp, dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"prefix, expected", [("a", ["b", " b c", "bc"]), ("ab", ["", "a b c", "bc"])]
)
def test_removeprefix(any_string_dtype, prefix, expected):
ser = Series(["ab", "a b c", "bc"], dtype=any_string_dtype)
result = ser.str.removeprefix(prefix)
ser_expected = Series(expected, dtype=any_string_dtype)
tm.assert_series_equal(result, ser_expected)
@pytest.mark.parametrize(
"suffix, expected", [("c", ["ab", "a b ", "b"]), ("bc", ["ab", "a b c", ""])]
)
def test_removesuffix(any_string_dtype, suffix, expected):
ser = Series(["ab", "a b c", "bc"], dtype=any_string_dtype)
result = ser.str.removesuffix(suffix)
ser_expected = Series(expected, dtype=any_string_dtype)
tm.assert_series_equal(result, ser_expected)
def test_string_slice_get_syntax(any_string_dtype):
ser = Series(
["YYY", "B", "C", "YYYYYYbYYY", "BYYYcYYY", np.nan, "CYYYBYYY", "dog", "cYYYt"],
dtype=any_string_dtype,
)
result = ser.str[0]
expected = ser.str.get(0)
tm.assert_series_equal(result, expected)
result = ser.str[:3]
expected = ser.str.slice(stop=3)
tm.assert_series_equal(result, expected)
result = ser.str[2::-1]
expected = ser.str.slice(start=2, step=-1)
tm.assert_series_equal(result, expected)
def test_string_slice_out_of_bounds_nested():
ser = Series([(1, 2), (1,), (3, 4, 5)])
result = ser.str[1]
expected = Series([2, np.nan, 4])
tm.assert_series_equal(result, expected)
def test_string_slice_out_of_bounds(any_string_dtype):
ser = Series(["foo", "b", "ba"], dtype=any_string_dtype)
result = ser.str[1]
expected = Series(["o", np.nan, "a"], dtype=any_string_dtype)
tm.assert_series_equal(result, expected)
def test_encode_decode(any_string_dtype):
ser = Series(["a", "b", "a\xe4"], dtype=any_string_dtype).str.encode("utf-8")
result = ser.str.decode("utf-8")
expected = ser.map(lambda x: x.decode("utf-8")).astype(object)
tm.assert_series_equal(result, expected)
def test_encode_errors_kwarg(any_string_dtype):
ser = Series(["a", "b", "a\x9d"], dtype=any_string_dtype)
msg = (
r"'charmap' codec can't encode character '\\x9d' in position 1: "
"character maps to <undefined>"
)
with pytest.raises(UnicodeEncodeError, match=msg):
ser.str.encode("cp1252")
result = ser.str.encode("cp1252", "ignore")
expected = ser.map(lambda x: x.encode("cp1252", "ignore"))
tm.assert_series_equal(result, expected)
def test_decode_errors_kwarg():
ser = Series([b"a", b"b", b"a\x9d"])
msg = (
"'charmap' codec can't decode byte 0x9d in position 1: "
"character maps to <undefined>"
)
with pytest.raises(UnicodeDecodeError, match=msg):
ser.str.decode("cp1252")
result = ser.str.decode("cp1252", "ignore")
expected = ser.map(lambda x: x.decode("cp1252", "ignore")).astype(object)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"form, expected",
[
("NFKC", ["ABC", "ABC", "123", np.nan, "アイエ"]),
("NFC", ["ABC", "", "", np.nan, "アイエ"]), # noqa: RUF001
],
)
def test_normalize(form, expected, any_string_dtype):
ser = Series(
["ABC", "", "", np.nan, "アイエ"], # noqa: RUF001
index=["a", "b", "c", "d", "e"],
dtype=any_string_dtype,
)
expected = Series(expected, index=["a", "b", "c", "d", "e"], dtype=any_string_dtype)
result = ser.str.normalize(form)
tm.assert_series_equal(result, expected)
def test_normalize_bad_arg_raises(any_string_dtype):
ser = Series(
["ABC", "", "", np.nan, "アイエ"], # noqa: RUF001
index=["a", "b", "c", "d", "e"],
dtype=any_string_dtype,
)
with pytest.raises(ValueError, match="invalid normalization form"):
ser.str.normalize("xxx")
def test_normalize_index():
idx = Index(["", "", "アイエ"]) # noqa: RUF001
expected = Index(["ABC", "123", "アイエ"])
result = idx.str.normalize("NFKC")
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize(
"values,inferred_type",
[
(["a", "b"], "string"),
(["a", "b", 1], "mixed-integer"),
(["a", "b", 1.3], "mixed"),
(["a", "b", 1.3, 1], "mixed-integer"),
(["aa", datetime(2011, 1, 1)], "mixed"),
],
)
def test_index_str_accessor_visibility(values, inferred_type, index_or_series):
obj = index_or_series(values)
if index_or_series is Index:
assert obj.inferred_type == inferred_type
assert isinstance(obj.str, StringMethods)
@pytest.mark.parametrize(
"values,inferred_type",
[
([1, np.nan], "floating"),
([datetime(2011, 1, 1)], "datetime64"),
([timedelta(1)], "timedelta64"),
],
)
def test_index_str_accessor_non_string_values_raises(
values, inferred_type, index_or_series
):
obj = index_or_series(values)
if index_or_series is Index:
assert obj.inferred_type == inferred_type
msg = "Can only use .str accessor with string values"
with pytest.raises(AttributeError, match=msg):
obj.str
def test_index_str_accessor_multiindex_raises():
# MultiIndex has mixed dtype, but not allow to use accessor
idx = MultiIndex.from_tuples([("a", "b"), ("a", "b")])
assert idx.inferred_type == "mixed"
msg = "Can only use .str accessor with Index, not MultiIndex"
with pytest.raises(AttributeError, match=msg):
idx.str
def test_str_accessor_no_new_attributes(any_string_dtype):
# https://github.com/pandas-dev/pandas/issues/10673
ser = Series(list("aabbcde"), dtype=any_string_dtype)
with pytest.raises(AttributeError, match="You cannot add any new attribute"):
ser.str.xlabel = "a"
def test_cat_on_bytes_raises():
lhs = Series(np.array(list("abc"), "S1").astype(object))
rhs = Series(np.array(list("def"), "S1").astype(object))
msg = "Cannot use .str.cat with values of inferred dtype 'bytes'"
with pytest.raises(TypeError, match=msg):
lhs.str.cat(rhs)
def test_str_accessor_in_apply_func():
# https://github.com/pandas-dev/pandas/issues/38979
df = DataFrame(zip("abc", "def"))
expected = Series(["A/D", "B/E", "C/F"])
result = df.apply(lambda f: "/".join(f.str.upper()), axis=1)
tm.assert_series_equal(result, expected)
def test_zfill():
# https://github.com/pandas-dev/pandas/issues/20868
value = Series(["-1", "1", "1000", 10, np.nan])
expected = Series(["-01", "001", "1000", np.nan, np.nan], dtype=object)
tm.assert_series_equal(value.str.zfill(3), expected)
value = Series(["-2", "+5"])
expected = Series(["-0002", "+0005"])
tm.assert_series_equal(value.str.zfill(5), expected)
def test_zfill_with_non_integer_argument():
value = Series(["-2", "+5"])
wid = "a"
msg = f"width must be of integer type, not {type(wid).__name__}"
with pytest.raises(TypeError, match=msg):
value.str.zfill(wid)
def test_zfill_with_leading_sign():
value = Series(["-cat", "-1", "+dog"])
expected = Series(["-0cat", "-0001", "+0dog"])
tm.assert_series_equal(value.str.zfill(5), expected)
def test_get_with_dict_label():
# GH47911
s = Series(
[
{"name": "Hello", "value": "World"},
{"name": "Goodbye", "value": "Planet"},
{"value": "Sea"},
]
)
result = s.str.get("name")
expected = Series(["Hello", "Goodbye", None], dtype=object)
tm.assert_series_equal(result, expected)
result = s.str.get("value")
expected = Series(["World", "Planet", "Sea"], dtype=object)
tm.assert_series_equal(result, expected)
def test_series_str_decode():
# GH 22613
result = Series([b"x", b"y"]).str.decode(encoding="UTF-8", errors="strict")
expected = Series(["x", "y"], dtype="object")
tm.assert_series_equal(result, expected)