forked from Alsan/Post_finder
venv
This commit is contained in:
@ -0,0 +1,98 @@
|
||||
"""
|
||||
Plotting public API.
|
||||
|
||||
Authors of third-party plotting backends should implement a module with a
|
||||
public ``plot(data, kind, **kwargs)``. The parameter `data` will contain
|
||||
the data structure and can be a `Series` or a `DataFrame`. For example,
|
||||
for ``df.plot()`` the parameter `data` will contain the DataFrame `df`.
|
||||
In some cases, the data structure is transformed before being sent to
|
||||
the backend (see PlotAccessor.__call__ in pandas/plotting/_core.py for
|
||||
the exact transformations).
|
||||
|
||||
The parameter `kind` will be one of:
|
||||
|
||||
- line
|
||||
- bar
|
||||
- barh
|
||||
- box
|
||||
- hist
|
||||
- kde
|
||||
- area
|
||||
- pie
|
||||
- scatter
|
||||
- hexbin
|
||||
|
||||
See the pandas API reference for documentation on each kind of plot.
|
||||
|
||||
Any other keyword argument is currently assumed to be backend specific,
|
||||
but some parameters may be unified and added to the signature in the
|
||||
future (e.g. `title` which should be useful for any backend).
|
||||
|
||||
Currently, all the Matplotlib functions in pandas are accessed through
|
||||
the selected backend. For example, `pandas.plotting.boxplot` (equivalent
|
||||
to `DataFrame.boxplot`) is also accessed in the selected backend. This
|
||||
is expected to change, and the exact API is under discussion. But with
|
||||
the current version, backends are expected to implement the next functions:
|
||||
|
||||
- plot (describe above, used for `Series.plot` and `DataFrame.plot`)
|
||||
- hist_series and hist_frame (for `Series.hist` and `DataFrame.hist`)
|
||||
- boxplot (`pandas.plotting.boxplot(df)` equivalent to `DataFrame.boxplot`)
|
||||
- boxplot_frame and boxplot_frame_groupby
|
||||
- register and deregister (register converters for the tick formats)
|
||||
- Plots not called as `Series` and `DataFrame` methods:
|
||||
- table
|
||||
- andrews_curves
|
||||
- autocorrelation_plot
|
||||
- bootstrap_plot
|
||||
- lag_plot
|
||||
- parallel_coordinates
|
||||
- radviz
|
||||
- scatter_matrix
|
||||
|
||||
Use the code in pandas/plotting/_matplotib.py and
|
||||
https://github.com/pyviz/hvplot as a reference on how to write a backend.
|
||||
|
||||
For the discussion about the API see
|
||||
https://github.com/pandas-dev/pandas/issues/26747.
|
||||
"""
|
||||
from pandas.plotting._core import (
|
||||
PlotAccessor,
|
||||
boxplot,
|
||||
boxplot_frame,
|
||||
boxplot_frame_groupby,
|
||||
hist_frame,
|
||||
hist_series,
|
||||
)
|
||||
from pandas.plotting._misc import (
|
||||
andrews_curves,
|
||||
autocorrelation_plot,
|
||||
bootstrap_plot,
|
||||
deregister as deregister_matplotlib_converters,
|
||||
lag_plot,
|
||||
parallel_coordinates,
|
||||
plot_params,
|
||||
radviz,
|
||||
register as register_matplotlib_converters,
|
||||
scatter_matrix,
|
||||
table,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"PlotAccessor",
|
||||
"boxplot",
|
||||
"boxplot_frame",
|
||||
"boxplot_frame_groupby",
|
||||
"hist_frame",
|
||||
"hist_series",
|
||||
"scatter_matrix",
|
||||
"radviz",
|
||||
"andrews_curves",
|
||||
"bootstrap_plot",
|
||||
"parallel_coordinates",
|
||||
"lag_plot",
|
||||
"autocorrelation_plot",
|
||||
"table",
|
||||
"plot_params",
|
||||
"register_matplotlib_converters",
|
||||
"deregister_matplotlib_converters",
|
||||
]
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
1946
venv/lib/python3.12/site-packages/pandas/plotting/_core.py
Normal file
1946
venv/lib/python3.12/site-packages/pandas/plotting/_core.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,93 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from pandas.plotting._matplotlib.boxplot import (
|
||||
BoxPlot,
|
||||
boxplot,
|
||||
boxplot_frame,
|
||||
boxplot_frame_groupby,
|
||||
)
|
||||
from pandas.plotting._matplotlib.converter import (
|
||||
deregister,
|
||||
register,
|
||||
)
|
||||
from pandas.plotting._matplotlib.core import (
|
||||
AreaPlot,
|
||||
BarhPlot,
|
||||
BarPlot,
|
||||
HexBinPlot,
|
||||
LinePlot,
|
||||
PiePlot,
|
||||
ScatterPlot,
|
||||
)
|
||||
from pandas.plotting._matplotlib.hist import (
|
||||
HistPlot,
|
||||
KdePlot,
|
||||
hist_frame,
|
||||
hist_series,
|
||||
)
|
||||
from pandas.plotting._matplotlib.misc import (
|
||||
andrews_curves,
|
||||
autocorrelation_plot,
|
||||
bootstrap_plot,
|
||||
lag_plot,
|
||||
parallel_coordinates,
|
||||
radviz,
|
||||
scatter_matrix,
|
||||
)
|
||||
from pandas.plotting._matplotlib.tools import table
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pandas.plotting._matplotlib.core import MPLPlot
|
||||
|
||||
PLOT_CLASSES: dict[str, type[MPLPlot]] = {
|
||||
"line": LinePlot,
|
||||
"bar": BarPlot,
|
||||
"barh": BarhPlot,
|
||||
"box": BoxPlot,
|
||||
"hist": HistPlot,
|
||||
"kde": KdePlot,
|
||||
"area": AreaPlot,
|
||||
"pie": PiePlot,
|
||||
"scatter": ScatterPlot,
|
||||
"hexbin": HexBinPlot,
|
||||
}
|
||||
|
||||
|
||||
def plot(data, kind, **kwargs):
|
||||
# Importing pyplot at the top of the file (before the converters are
|
||||
# registered) causes problems in matplotlib 2 (converters seem to not
|
||||
# work)
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
if kwargs.pop("reuse_plot", False):
|
||||
ax = kwargs.get("ax")
|
||||
if ax is None and len(plt.get_fignums()) > 0:
|
||||
with plt.rc_context():
|
||||
ax = plt.gca()
|
||||
kwargs["ax"] = getattr(ax, "left_ax", ax)
|
||||
plot_obj = PLOT_CLASSES[kind](data, **kwargs)
|
||||
plot_obj.generate()
|
||||
plot_obj.draw()
|
||||
return plot_obj.result
|
||||
|
||||
|
||||
__all__ = [
|
||||
"plot",
|
||||
"hist_series",
|
||||
"hist_frame",
|
||||
"boxplot",
|
||||
"boxplot_frame",
|
||||
"boxplot_frame_groupby",
|
||||
"table",
|
||||
"andrews_curves",
|
||||
"autocorrelation_plot",
|
||||
"bootstrap_plot",
|
||||
"lag_plot",
|
||||
"parallel_coordinates",
|
||||
"radviz",
|
||||
"scatter_matrix",
|
||||
"register",
|
||||
"deregister",
|
||||
]
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,572 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Literal,
|
||||
NamedTuple,
|
||||
)
|
||||
import warnings
|
||||
|
||||
from matplotlib.artist import setp
|
||||
import numpy as np
|
||||
|
||||
from pandas._libs import lib
|
||||
from pandas.util._decorators import cache_readonly
|
||||
from pandas.util._exceptions import find_stack_level
|
||||
|
||||
from pandas.core.dtypes.common import is_dict_like
|
||||
from pandas.core.dtypes.generic import ABCSeries
|
||||
from pandas.core.dtypes.missing import remove_na_arraylike
|
||||
|
||||
import pandas as pd
|
||||
import pandas.core.common as com
|
||||
|
||||
from pandas.io.formats.printing import pprint_thing
|
||||
from pandas.plotting._matplotlib.core import (
|
||||
LinePlot,
|
||||
MPLPlot,
|
||||
)
|
||||
from pandas.plotting._matplotlib.groupby import create_iter_data_given_by
|
||||
from pandas.plotting._matplotlib.style import get_standard_colors
|
||||
from pandas.plotting._matplotlib.tools import (
|
||||
create_subplots,
|
||||
flatten_axes,
|
||||
maybe_adjust_figure,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Collection
|
||||
|
||||
from matplotlib.axes import Axes
|
||||
from matplotlib.figure import Figure
|
||||
from matplotlib.lines import Line2D
|
||||
|
||||
from pandas._typing import MatplotlibColor
|
||||
|
||||
|
||||
def _set_ticklabels(ax: Axes, labels: list[str], is_vertical: bool, **kwargs) -> None:
|
||||
"""Set the tick labels of a given axis.
|
||||
|
||||
Due to https://github.com/matplotlib/matplotlib/pull/17266, we need to handle the
|
||||
case of repeated ticks (due to `FixedLocator`) and thus we duplicate the number of
|
||||
labels.
|
||||
"""
|
||||
ticks = ax.get_xticks() if is_vertical else ax.get_yticks()
|
||||
if len(ticks) != len(labels):
|
||||
i, remainder = divmod(len(ticks), len(labels))
|
||||
assert remainder == 0, remainder
|
||||
labels *= i
|
||||
if is_vertical:
|
||||
ax.set_xticklabels(labels, **kwargs)
|
||||
else:
|
||||
ax.set_yticklabels(labels, **kwargs)
|
||||
|
||||
|
||||
class BoxPlot(LinePlot):
|
||||
@property
|
||||
def _kind(self) -> Literal["box"]:
|
||||
return "box"
|
||||
|
||||
_layout_type = "horizontal"
|
||||
|
||||
_valid_return_types = (None, "axes", "dict", "both")
|
||||
|
||||
class BP(NamedTuple):
|
||||
# namedtuple to hold results
|
||||
ax: Axes
|
||||
lines: dict[str, list[Line2D]]
|
||||
|
||||
def __init__(self, data, return_type: str = "axes", **kwargs) -> None:
|
||||
if return_type not in self._valid_return_types:
|
||||
raise ValueError("return_type must be {None, 'axes', 'dict', 'both'}")
|
||||
|
||||
self.return_type = return_type
|
||||
# Do not call LinePlot.__init__ which may fill nan
|
||||
MPLPlot.__init__(self, data, **kwargs) # pylint: disable=non-parent-init-called
|
||||
|
||||
if self.subplots:
|
||||
# Disable label ax sharing. Otherwise, all subplots shows last
|
||||
# column label
|
||||
if self.orientation == "vertical":
|
||||
self.sharex = False
|
||||
else:
|
||||
self.sharey = False
|
||||
|
||||
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
|
||||
@classmethod
|
||||
def _plot( # type: ignore[override]
|
||||
cls, ax: Axes, y: np.ndarray, column_num=None, return_type: str = "axes", **kwds
|
||||
):
|
||||
ys: np.ndarray | list[np.ndarray]
|
||||
if y.ndim == 2:
|
||||
ys = [remove_na_arraylike(v) for v in y]
|
||||
# Boxplot fails with empty arrays, so need to add a NaN
|
||||
# if any cols are empty
|
||||
# GH 8181
|
||||
ys = [v if v.size > 0 else np.array([np.nan]) for v in ys]
|
||||
else:
|
||||
ys = remove_na_arraylike(y)
|
||||
bp = ax.boxplot(ys, **kwds)
|
||||
|
||||
if return_type == "dict":
|
||||
return bp, bp
|
||||
elif return_type == "both":
|
||||
return cls.BP(ax=ax, lines=bp), bp
|
||||
else:
|
||||
return ax, bp
|
||||
|
||||
def _validate_color_args(self, color, colormap):
|
||||
if color is lib.no_default:
|
||||
return None
|
||||
|
||||
if colormap is not None:
|
||||
warnings.warn(
|
||||
"'color' and 'colormap' cannot be used "
|
||||
"simultaneously. Using 'color'",
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
|
||||
if isinstance(color, dict):
|
||||
valid_keys = ["boxes", "whiskers", "medians", "caps"]
|
||||
for key in color:
|
||||
if key not in valid_keys:
|
||||
raise ValueError(
|
||||
f"color dict contains invalid key '{key}'. "
|
||||
f"The key must be either {valid_keys}"
|
||||
)
|
||||
return color
|
||||
|
||||
@cache_readonly
|
||||
def _color_attrs(self):
|
||||
# get standard colors for default
|
||||
# use 2 colors by default, for box/whisker and median
|
||||
# flier colors isn't needed here
|
||||
# because it can be specified by ``sym`` kw
|
||||
return get_standard_colors(num_colors=3, colormap=self.colormap, color=None)
|
||||
|
||||
@cache_readonly
|
||||
def _boxes_c(self):
|
||||
return self._color_attrs[0]
|
||||
|
||||
@cache_readonly
|
||||
def _whiskers_c(self):
|
||||
return self._color_attrs[0]
|
||||
|
||||
@cache_readonly
|
||||
def _medians_c(self):
|
||||
return self._color_attrs[2]
|
||||
|
||||
@cache_readonly
|
||||
def _caps_c(self):
|
||||
return self._color_attrs[0]
|
||||
|
||||
def _get_colors(
|
||||
self,
|
||||
num_colors=None,
|
||||
color_kwds: dict[str, MatplotlibColor]
|
||||
| MatplotlibColor
|
||||
| Collection[MatplotlibColor]
|
||||
| None = "color",
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
def maybe_color_bp(self, bp) -> None:
|
||||
if isinstance(self.color, dict):
|
||||
boxes = self.color.get("boxes", self._boxes_c)
|
||||
whiskers = self.color.get("whiskers", self._whiskers_c)
|
||||
medians = self.color.get("medians", self._medians_c)
|
||||
caps = self.color.get("caps", self._caps_c)
|
||||
else:
|
||||
# Other types are forwarded to matplotlib
|
||||
# If None, use default colors
|
||||
boxes = self.color or self._boxes_c
|
||||
whiskers = self.color or self._whiskers_c
|
||||
medians = self.color or self._medians_c
|
||||
caps = self.color or self._caps_c
|
||||
|
||||
color_tup = (boxes, whiskers, medians, caps)
|
||||
maybe_color_bp(bp, color_tup=color_tup, **self.kwds)
|
||||
|
||||
def _make_plot(self, fig: Figure) -> None:
|
||||
if self.subplots:
|
||||
self._return_obj = pd.Series(dtype=object)
|
||||
|
||||
# Re-create iterated data if `by` is assigned by users
|
||||
data = (
|
||||
create_iter_data_given_by(self.data, self._kind)
|
||||
if self.by is not None
|
||||
else self.data
|
||||
)
|
||||
|
||||
# error: Argument "data" to "_iter_data" of "MPLPlot" has
|
||||
# incompatible type "object"; expected "DataFrame |
|
||||
# dict[Hashable, Series | DataFrame]"
|
||||
for i, (label, y) in enumerate(self._iter_data(data=data)): # type: ignore[arg-type]
|
||||
ax = self._get_ax(i)
|
||||
kwds = self.kwds.copy()
|
||||
|
||||
# When by is applied, show title for subplots to know which group it is
|
||||
# just like df.boxplot, and need to apply T on y to provide right input
|
||||
if self.by is not None:
|
||||
y = y.T
|
||||
ax.set_title(pprint_thing(label))
|
||||
|
||||
# When `by` is assigned, the ticklabels will become unique grouped
|
||||
# values, instead of label which is used as subtitle in this case.
|
||||
# error: "Index" has no attribute "levels"; maybe "nlevels"?
|
||||
levels = self.data.columns.levels # type: ignore[attr-defined]
|
||||
ticklabels = [pprint_thing(col) for col in levels[0]]
|
||||
else:
|
||||
ticklabels = [pprint_thing(label)]
|
||||
|
||||
ret, bp = self._plot(
|
||||
ax, y, column_num=i, return_type=self.return_type, **kwds
|
||||
)
|
||||
self.maybe_color_bp(bp)
|
||||
self._return_obj[label] = ret
|
||||
_set_ticklabels(
|
||||
ax=ax, labels=ticklabels, is_vertical=self.orientation == "vertical"
|
||||
)
|
||||
else:
|
||||
y = self.data.values.T
|
||||
ax = self._get_ax(0)
|
||||
kwds = self.kwds.copy()
|
||||
|
||||
ret, bp = self._plot(
|
||||
ax, y, column_num=0, return_type=self.return_type, **kwds
|
||||
)
|
||||
self.maybe_color_bp(bp)
|
||||
self._return_obj = ret
|
||||
|
||||
labels = [pprint_thing(left) for left in self.data.columns]
|
||||
if not self.use_index:
|
||||
labels = [pprint_thing(key) for key in range(len(labels))]
|
||||
_set_ticklabels(
|
||||
ax=ax, labels=labels, is_vertical=self.orientation == "vertical"
|
||||
)
|
||||
|
||||
def _make_legend(self) -> None:
|
||||
pass
|
||||
|
||||
def _post_plot_logic(self, ax: Axes, data) -> None:
|
||||
# GH 45465: make sure that the boxplot doesn't ignore xlabel/ylabel
|
||||
if self.xlabel:
|
||||
ax.set_xlabel(pprint_thing(self.xlabel))
|
||||
if self.ylabel:
|
||||
ax.set_ylabel(pprint_thing(self.ylabel))
|
||||
|
||||
@property
|
||||
def orientation(self) -> Literal["horizontal", "vertical"]:
|
||||
if self.kwds.get("vert", True):
|
||||
return "vertical"
|
||||
else:
|
||||
return "horizontal"
|
||||
|
||||
@property
|
||||
def result(self):
|
||||
if self.return_type is None:
|
||||
return super().result
|
||||
else:
|
||||
return self._return_obj
|
||||
|
||||
|
||||
def maybe_color_bp(bp, color_tup, **kwds) -> None:
|
||||
# GH#30346, when users specifying those arguments explicitly, our defaults
|
||||
# for these four kwargs should be overridden; if not, use Pandas settings
|
||||
if not kwds.get("boxprops"):
|
||||
setp(bp["boxes"], color=color_tup[0], alpha=1)
|
||||
if not kwds.get("whiskerprops"):
|
||||
setp(bp["whiskers"], color=color_tup[1], alpha=1)
|
||||
if not kwds.get("medianprops"):
|
||||
setp(bp["medians"], color=color_tup[2], alpha=1)
|
||||
if not kwds.get("capprops"):
|
||||
setp(bp["caps"], color=color_tup[3], alpha=1)
|
||||
|
||||
|
||||
def _grouped_plot_by_column(
|
||||
plotf,
|
||||
data,
|
||||
columns=None,
|
||||
by=None,
|
||||
numeric_only: bool = True,
|
||||
grid: bool = False,
|
||||
figsize: tuple[float, float] | None = None,
|
||||
ax=None,
|
||||
layout=None,
|
||||
return_type=None,
|
||||
**kwargs,
|
||||
):
|
||||
grouped = data.groupby(by, observed=False)
|
||||
if columns is None:
|
||||
if not isinstance(by, (list, tuple)):
|
||||
by = [by]
|
||||
columns = data._get_numeric_data().columns.difference(by)
|
||||
naxes = len(columns)
|
||||
fig, axes = create_subplots(
|
||||
naxes=naxes,
|
||||
sharex=kwargs.pop("sharex", True),
|
||||
sharey=kwargs.pop("sharey", True),
|
||||
figsize=figsize,
|
||||
ax=ax,
|
||||
layout=layout,
|
||||
)
|
||||
|
||||
_axes = flatten_axes(axes)
|
||||
|
||||
# GH 45465: move the "by" label based on "vert"
|
||||
xlabel, ylabel = kwargs.pop("xlabel", None), kwargs.pop("ylabel", None)
|
||||
if kwargs.get("vert", True):
|
||||
xlabel = xlabel or by
|
||||
else:
|
||||
ylabel = ylabel or by
|
||||
|
||||
ax_values = []
|
||||
|
||||
for i, col in enumerate(columns):
|
||||
ax = _axes[i]
|
||||
gp_col = grouped[col]
|
||||
keys, values = zip(*gp_col)
|
||||
re_plotf = plotf(keys, values, ax, xlabel=xlabel, ylabel=ylabel, **kwargs)
|
||||
ax.set_title(col)
|
||||
ax_values.append(re_plotf)
|
||||
ax.grid(grid)
|
||||
|
||||
result = pd.Series(ax_values, index=columns, copy=False)
|
||||
|
||||
# Return axes in multiplot case, maybe revisit later # 985
|
||||
if return_type is None:
|
||||
result = axes
|
||||
|
||||
byline = by[0] if len(by) == 1 else by
|
||||
fig.suptitle(f"Boxplot grouped by {byline}")
|
||||
maybe_adjust_figure(fig, bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def boxplot(
|
||||
data,
|
||||
column=None,
|
||||
by=None,
|
||||
ax=None,
|
||||
fontsize: int | None = None,
|
||||
rot: int = 0,
|
||||
grid: bool = True,
|
||||
figsize: tuple[float, float] | None = None,
|
||||
layout=None,
|
||||
return_type=None,
|
||||
**kwds,
|
||||
):
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# validate return_type:
|
||||
if return_type not in BoxPlot._valid_return_types:
|
||||
raise ValueError("return_type must be {'axes', 'dict', 'both'}")
|
||||
|
||||
if isinstance(data, ABCSeries):
|
||||
data = data.to_frame("x")
|
||||
column = "x"
|
||||
|
||||
def _get_colors():
|
||||
# num_colors=3 is required as method maybe_color_bp takes the colors
|
||||
# in positions 0 and 2.
|
||||
# if colors not provided, use same defaults as DataFrame.plot.box
|
||||
result = get_standard_colors(num_colors=3)
|
||||
result = np.take(result, [0, 0, 2])
|
||||
result = np.append(result, "k")
|
||||
|
||||
colors = kwds.pop("color", None)
|
||||
if colors:
|
||||
if is_dict_like(colors):
|
||||
# replace colors in result array with user-specified colors
|
||||
# taken from the colors dict parameter
|
||||
# "boxes" value placed in position 0, "whiskers" in 1, etc.
|
||||
valid_keys = ["boxes", "whiskers", "medians", "caps"]
|
||||
key_to_index = dict(zip(valid_keys, range(4)))
|
||||
for key, value in colors.items():
|
||||
if key in valid_keys:
|
||||
result[key_to_index[key]] = value
|
||||
else:
|
||||
raise ValueError(
|
||||
f"color dict contains invalid key '{key}'. "
|
||||
f"The key must be either {valid_keys}"
|
||||
)
|
||||
else:
|
||||
result.fill(colors)
|
||||
|
||||
return result
|
||||
|
||||
def plot_group(keys, values, ax: Axes, **kwds):
|
||||
# GH 45465: xlabel/ylabel need to be popped out before plotting happens
|
||||
xlabel, ylabel = kwds.pop("xlabel", None), kwds.pop("ylabel", None)
|
||||
if xlabel:
|
||||
ax.set_xlabel(pprint_thing(xlabel))
|
||||
if ylabel:
|
||||
ax.set_ylabel(pprint_thing(ylabel))
|
||||
|
||||
keys = [pprint_thing(x) for x in keys]
|
||||
values = [np.asarray(remove_na_arraylike(v), dtype=object) for v in values]
|
||||
bp = ax.boxplot(values, **kwds)
|
||||
if fontsize is not None:
|
||||
ax.tick_params(axis="both", labelsize=fontsize)
|
||||
|
||||
# GH 45465: x/y are flipped when "vert" changes
|
||||
_set_ticklabels(
|
||||
ax=ax, labels=keys, is_vertical=kwds.get("vert", True), rotation=rot
|
||||
)
|
||||
maybe_color_bp(bp, color_tup=colors, **kwds)
|
||||
|
||||
# Return axes in multiplot case, maybe revisit later # 985
|
||||
if return_type == "dict":
|
||||
return bp
|
||||
elif return_type == "both":
|
||||
return BoxPlot.BP(ax=ax, lines=bp)
|
||||
else:
|
||||
return ax
|
||||
|
||||
colors = _get_colors()
|
||||
if column is None:
|
||||
columns = None
|
||||
elif isinstance(column, (list, tuple)):
|
||||
columns = column
|
||||
else:
|
||||
columns = [column]
|
||||
|
||||
if by is not None:
|
||||
# Prefer array return type for 2-D plots to match the subplot layout
|
||||
# https://github.com/pandas-dev/pandas/pull/12216#issuecomment-241175580
|
||||
result = _grouped_plot_by_column(
|
||||
plot_group,
|
||||
data,
|
||||
columns=columns,
|
||||
by=by,
|
||||
grid=grid,
|
||||
figsize=figsize,
|
||||
ax=ax,
|
||||
layout=layout,
|
||||
return_type=return_type,
|
||||
**kwds,
|
||||
)
|
||||
else:
|
||||
if return_type is None:
|
||||
return_type = "axes"
|
||||
if layout is not None:
|
||||
raise ValueError("The 'layout' keyword is not supported when 'by' is None")
|
||||
|
||||
if ax is None:
|
||||
rc = {"figure.figsize": figsize} if figsize is not None else {}
|
||||
with plt.rc_context(rc):
|
||||
ax = plt.gca()
|
||||
data = data._get_numeric_data()
|
||||
naxes = len(data.columns)
|
||||
if naxes == 0:
|
||||
raise ValueError(
|
||||
"boxplot method requires numerical columns, nothing to plot."
|
||||
)
|
||||
if columns is None:
|
||||
columns = data.columns
|
||||
else:
|
||||
data = data[columns]
|
||||
|
||||
result = plot_group(columns, data.values.T, ax, **kwds)
|
||||
ax.grid(grid)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def boxplot_frame(
|
||||
self,
|
||||
column=None,
|
||||
by=None,
|
||||
ax=None,
|
||||
fontsize: int | None = None,
|
||||
rot: int = 0,
|
||||
grid: bool = True,
|
||||
figsize: tuple[float, float] | None = None,
|
||||
layout=None,
|
||||
return_type=None,
|
||||
**kwds,
|
||||
):
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
ax = boxplot(
|
||||
self,
|
||||
column=column,
|
||||
by=by,
|
||||
ax=ax,
|
||||
fontsize=fontsize,
|
||||
grid=grid,
|
||||
rot=rot,
|
||||
figsize=figsize,
|
||||
layout=layout,
|
||||
return_type=return_type,
|
||||
**kwds,
|
||||
)
|
||||
plt.draw_if_interactive()
|
||||
return ax
|
||||
|
||||
|
||||
def boxplot_frame_groupby(
|
||||
grouped,
|
||||
subplots: bool = True,
|
||||
column=None,
|
||||
fontsize: int | None = None,
|
||||
rot: int = 0,
|
||||
grid: bool = True,
|
||||
ax=None,
|
||||
figsize: tuple[float, float] | None = None,
|
||||
layout=None,
|
||||
sharex: bool = False,
|
||||
sharey: bool = True,
|
||||
**kwds,
|
||||
):
|
||||
if subplots is True:
|
||||
naxes = len(grouped)
|
||||
fig, axes = create_subplots(
|
||||
naxes=naxes,
|
||||
squeeze=False,
|
||||
ax=ax,
|
||||
sharex=sharex,
|
||||
sharey=sharey,
|
||||
figsize=figsize,
|
||||
layout=layout,
|
||||
)
|
||||
axes = flatten_axes(axes)
|
||||
|
||||
ret = pd.Series(dtype=object)
|
||||
|
||||
for (key, group), ax in zip(grouped, axes):
|
||||
d = group.boxplot(
|
||||
ax=ax, column=column, fontsize=fontsize, rot=rot, grid=grid, **kwds
|
||||
)
|
||||
ax.set_title(pprint_thing(key))
|
||||
ret.loc[key] = d
|
||||
maybe_adjust_figure(fig, bottom=0.15, top=0.9, left=0.1, right=0.9, wspace=0.2)
|
||||
else:
|
||||
keys, frames = zip(*grouped)
|
||||
if grouped.axis == 0:
|
||||
df = pd.concat(frames, keys=keys, axis=1)
|
||||
elif len(frames) > 1:
|
||||
df = frames[0].join(frames[1::])
|
||||
else:
|
||||
df = frames[0]
|
||||
|
||||
# GH 16748, DataFrameGroupby fails when subplots=False and `column` argument
|
||||
# is assigned, and in this case, since `df` here becomes MI after groupby,
|
||||
# so we need to couple the keys (grouped values) and column (original df
|
||||
# column) together to search for subset to plot
|
||||
if column is not None:
|
||||
column = com.convert_to_list_like(column)
|
||||
multi_key = pd.MultiIndex.from_product([keys, column])
|
||||
column = list(multi_key.values)
|
||||
ret = df.boxplot(
|
||||
column=column,
|
||||
fontsize=fontsize,
|
||||
rot=rot,
|
||||
grid=grid,
|
||||
ax=ax,
|
||||
figsize=figsize,
|
||||
layout=layout,
|
||||
**kwds,
|
||||
)
|
||||
return ret
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,142 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas.core.dtypes.missing import remove_na_arraylike
|
||||
|
||||
from pandas import (
|
||||
MultiIndex,
|
||||
concat,
|
||||
)
|
||||
|
||||
from pandas.plotting._matplotlib.misc import unpack_single_str_list
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Hashable
|
||||
|
||||
from pandas._typing import IndexLabel
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Series,
|
||||
)
|
||||
|
||||
|
||||
def create_iter_data_given_by(
|
||||
data: DataFrame, kind: str = "hist"
|
||||
) -> dict[Hashable, DataFrame | Series]:
|
||||
"""
|
||||
Create data for iteration given `by` is assigned or not, and it is only
|
||||
used in both hist and boxplot.
|
||||
|
||||
If `by` is assigned, return a dictionary of DataFrames in which the key of
|
||||
dictionary is the values in groups.
|
||||
If `by` is not assigned, return input as is, and this preserves current
|
||||
status of iter_data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : reformatted grouped data from `_compute_plot_data` method.
|
||||
kind : str, plot kind. This function is only used for `hist` and `box` plots.
|
||||
|
||||
Returns
|
||||
-------
|
||||
iter_data : DataFrame or Dictionary of DataFrames
|
||||
|
||||
Examples
|
||||
--------
|
||||
If `by` is assigned:
|
||||
|
||||
>>> import numpy as np
|
||||
>>> tuples = [('h1', 'a'), ('h1', 'b'), ('h2', 'a'), ('h2', 'b')]
|
||||
>>> mi = pd.MultiIndex.from_tuples(tuples)
|
||||
>>> value = [[1, 3, np.nan, np.nan],
|
||||
... [3, 4, np.nan, np.nan], [np.nan, np.nan, 5, 6]]
|
||||
>>> data = pd.DataFrame(value, columns=mi)
|
||||
>>> create_iter_data_given_by(data)
|
||||
{'h1': h1
|
||||
a b
|
||||
0 1.0 3.0
|
||||
1 3.0 4.0
|
||||
2 NaN NaN, 'h2': h2
|
||||
a b
|
||||
0 NaN NaN
|
||||
1 NaN NaN
|
||||
2 5.0 6.0}
|
||||
"""
|
||||
|
||||
# For `hist` plot, before transformation, the values in level 0 are values
|
||||
# in groups and subplot titles, and later used for column subselection and
|
||||
# iteration; For `box` plot, values in level 1 are column names to show,
|
||||
# and are used for iteration and as subplots titles.
|
||||
if kind == "hist":
|
||||
level = 0
|
||||
else:
|
||||
level = 1
|
||||
|
||||
# Select sub-columns based on the value of level of MI, and if `by` is
|
||||
# assigned, data must be a MI DataFrame
|
||||
assert isinstance(data.columns, MultiIndex)
|
||||
return {
|
||||
col: data.loc[:, data.columns.get_level_values(level) == col]
|
||||
for col in data.columns.levels[level]
|
||||
}
|
||||
|
||||
|
||||
def reconstruct_data_with_by(
|
||||
data: DataFrame, by: IndexLabel, cols: IndexLabel
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Internal function to group data, and reassign multiindex column names onto the
|
||||
result in order to let grouped data be used in _compute_plot_data method.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : Original DataFrame to plot
|
||||
by : grouped `by` parameter selected by users
|
||||
cols : columns of data set (excluding columns used in `by`)
|
||||
|
||||
Returns
|
||||
-------
|
||||
Output is the reconstructed DataFrame with MultiIndex columns. The first level
|
||||
of MI is unique values of groups, and second level of MI is the columns
|
||||
selected by users.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> d = {'h': ['h1', 'h1', 'h2'], 'a': [1, 3, 5], 'b': [3, 4, 6]}
|
||||
>>> df = pd.DataFrame(d)
|
||||
>>> reconstruct_data_with_by(df, by='h', cols=['a', 'b'])
|
||||
h1 h2
|
||||
a b a b
|
||||
0 1.0 3.0 NaN NaN
|
||||
1 3.0 4.0 NaN NaN
|
||||
2 NaN NaN 5.0 6.0
|
||||
"""
|
||||
by_modified = unpack_single_str_list(by)
|
||||
grouped = data.groupby(by_modified)
|
||||
|
||||
data_list = []
|
||||
for key, group in grouped:
|
||||
# error: List item 1 has incompatible type "Union[Hashable,
|
||||
# Sequence[Hashable]]"; expected "Iterable[Hashable]"
|
||||
columns = MultiIndex.from_product([[key], cols]) # type: ignore[list-item]
|
||||
sub_group = group[cols]
|
||||
sub_group.columns = columns
|
||||
data_list.append(sub_group)
|
||||
|
||||
data = concat(data_list, axis=1)
|
||||
return data
|
||||
|
||||
|
||||
def reformat_hist_y_given_by(y: np.ndarray, by: IndexLabel | None) -> np.ndarray:
|
||||
"""Internal function to reformat y given `by` is applied or not for hist plot.
|
||||
|
||||
If by is None, input y is 1-d with NaN removed; and if by is not None, groupby
|
||||
will take place and input y is multi-dimensional array.
|
||||
"""
|
||||
if by is not None and len(y.shape) > 1:
|
||||
return np.array([remove_na_arraylike(col) for col in y.T]).T
|
||||
return remove_na_arraylike(y)
|
@ -0,0 +1,581 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Literal,
|
||||
final,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas.core.dtypes.common import (
|
||||
is_integer,
|
||||
is_list_like,
|
||||
)
|
||||
from pandas.core.dtypes.generic import (
|
||||
ABCDataFrame,
|
||||
ABCIndex,
|
||||
)
|
||||
from pandas.core.dtypes.missing import (
|
||||
isna,
|
||||
remove_na_arraylike,
|
||||
)
|
||||
|
||||
from pandas.io.formats.printing import pprint_thing
|
||||
from pandas.plotting._matplotlib.core import (
|
||||
LinePlot,
|
||||
MPLPlot,
|
||||
)
|
||||
from pandas.plotting._matplotlib.groupby import (
|
||||
create_iter_data_given_by,
|
||||
reformat_hist_y_given_by,
|
||||
)
|
||||
from pandas.plotting._matplotlib.misc import unpack_single_str_list
|
||||
from pandas.plotting._matplotlib.tools import (
|
||||
create_subplots,
|
||||
flatten_axes,
|
||||
maybe_adjust_figure,
|
||||
set_ticks_props,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from matplotlib.axes import Axes
|
||||
from matplotlib.figure import Figure
|
||||
|
||||
from pandas._typing import PlottingOrientation
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Series,
|
||||
)
|
||||
|
||||
|
||||
class HistPlot(LinePlot):
|
||||
@property
|
||||
def _kind(self) -> Literal["hist", "kde"]:
|
||||
return "hist"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
data,
|
||||
bins: int | np.ndarray | list[np.ndarray] = 10,
|
||||
bottom: int | np.ndarray = 0,
|
||||
*,
|
||||
range=None,
|
||||
weights=None,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
if is_list_like(bottom):
|
||||
bottom = np.array(bottom)
|
||||
self.bottom = bottom
|
||||
|
||||
self._bin_range = range
|
||||
self.weights = weights
|
||||
|
||||
self.xlabel = kwargs.get("xlabel")
|
||||
self.ylabel = kwargs.get("ylabel")
|
||||
# Do not call LinePlot.__init__ which may fill nan
|
||||
MPLPlot.__init__(self, data, **kwargs) # pylint: disable=non-parent-init-called
|
||||
|
||||
self.bins = self._adjust_bins(bins)
|
||||
|
||||
def _adjust_bins(self, bins: int | np.ndarray | list[np.ndarray]):
|
||||
if is_integer(bins):
|
||||
if self.by is not None:
|
||||
by_modified = unpack_single_str_list(self.by)
|
||||
grouped = self.data.groupby(by_modified)[self.columns]
|
||||
bins = [self._calculate_bins(group, bins) for key, group in grouped]
|
||||
else:
|
||||
bins = self._calculate_bins(self.data, bins)
|
||||
return bins
|
||||
|
||||
def _calculate_bins(self, data: Series | DataFrame, bins) -> np.ndarray:
|
||||
"""Calculate bins given data"""
|
||||
nd_values = data.infer_objects(copy=False)._get_numeric_data()
|
||||
values = np.ravel(nd_values)
|
||||
values = values[~isna(values)]
|
||||
|
||||
hist, bins = np.histogram(values, bins=bins, range=self._bin_range)
|
||||
return bins
|
||||
|
||||
# error: Signature of "_plot" incompatible with supertype "LinePlot"
|
||||
@classmethod
|
||||
def _plot( # type: ignore[override]
|
||||
cls,
|
||||
ax: Axes,
|
||||
y: np.ndarray,
|
||||
style=None,
|
||||
bottom: int | np.ndarray = 0,
|
||||
column_num: int = 0,
|
||||
stacking_id=None,
|
||||
*,
|
||||
bins,
|
||||
**kwds,
|
||||
):
|
||||
if column_num == 0:
|
||||
cls._initialize_stacker(ax, stacking_id, len(bins) - 1)
|
||||
|
||||
base = np.zeros(len(bins) - 1)
|
||||
bottom = bottom + cls._get_stacked_values(ax, stacking_id, base, kwds["label"])
|
||||
# ignore style
|
||||
n, bins, patches = ax.hist(y, bins=bins, bottom=bottom, **kwds)
|
||||
cls._update_stacker(ax, stacking_id, n)
|
||||
return patches
|
||||
|
||||
def _make_plot(self, fig: Figure) -> None:
|
||||
colors = self._get_colors()
|
||||
stacking_id = self._get_stacking_id()
|
||||
|
||||
# Re-create iterated data if `by` is assigned by users
|
||||
data = (
|
||||
create_iter_data_given_by(self.data, self._kind)
|
||||
if self.by is not None
|
||||
else self.data
|
||||
)
|
||||
|
||||
# error: Argument "data" to "_iter_data" of "MPLPlot" has incompatible
|
||||
# type "object"; expected "DataFrame | dict[Hashable, Series | DataFrame]"
|
||||
for i, (label, y) in enumerate(self._iter_data(data=data)): # type: ignore[arg-type]
|
||||
ax = self._get_ax(i)
|
||||
|
||||
kwds = self.kwds.copy()
|
||||
if self.color is not None:
|
||||
kwds["color"] = self.color
|
||||
|
||||
label = pprint_thing(label)
|
||||
label = self._mark_right_label(label, index=i)
|
||||
kwds["label"] = label
|
||||
|
||||
style, kwds = self._apply_style_colors(colors, kwds, i, label)
|
||||
if style is not None:
|
||||
kwds["style"] = style
|
||||
|
||||
self._make_plot_keywords(kwds, y)
|
||||
|
||||
# the bins is multi-dimension array now and each plot need only 1-d and
|
||||
# when by is applied, label should be columns that are grouped
|
||||
if self.by is not None:
|
||||
kwds["bins"] = kwds["bins"][i]
|
||||
kwds["label"] = self.columns
|
||||
kwds.pop("color")
|
||||
|
||||
if self.weights is not None:
|
||||
kwds["weights"] = type(self)._get_column_weights(self.weights, i, y)
|
||||
|
||||
y = reformat_hist_y_given_by(y, self.by)
|
||||
|
||||
artists = self._plot(ax, y, column_num=i, stacking_id=stacking_id, **kwds)
|
||||
|
||||
# when by is applied, show title for subplots to know which group it is
|
||||
if self.by is not None:
|
||||
ax.set_title(pprint_thing(label))
|
||||
|
||||
self._append_legend_handles_labels(artists[0], label)
|
||||
|
||||
def _make_plot_keywords(self, kwds: dict[str, Any], y: np.ndarray) -> None:
|
||||
"""merge BoxPlot/KdePlot properties to passed kwds"""
|
||||
# y is required for KdePlot
|
||||
kwds["bottom"] = self.bottom
|
||||
kwds["bins"] = self.bins
|
||||
|
||||
@final
|
||||
@staticmethod
|
||||
def _get_column_weights(weights, i: int, y):
|
||||
# We allow weights to be a multi-dimensional array, e.g. a (10, 2) array,
|
||||
# and each sub-array (10,) will be called in each iteration. If users only
|
||||
# provide 1D array, we assume the same weights is used for all iterations
|
||||
if weights is not None:
|
||||
if np.ndim(weights) != 1 and np.shape(weights)[-1] != 1:
|
||||
try:
|
||||
weights = weights[:, i]
|
||||
except IndexError as err:
|
||||
raise ValueError(
|
||||
"weights must have the same shape as data, "
|
||||
"or be a single column"
|
||||
) from err
|
||||
weights = weights[~isna(y)]
|
||||
return weights
|
||||
|
||||
def _post_plot_logic(self, ax: Axes, data) -> None:
|
||||
if self.orientation == "horizontal":
|
||||
# error: Argument 1 to "set_xlabel" of "_AxesBase" has incompatible
|
||||
# type "Hashable"; expected "str"
|
||||
ax.set_xlabel(
|
||||
"Frequency"
|
||||
if self.xlabel is None
|
||||
else self.xlabel # type: ignore[arg-type]
|
||||
)
|
||||
ax.set_ylabel(self.ylabel) # type: ignore[arg-type]
|
||||
else:
|
||||
ax.set_xlabel(self.xlabel) # type: ignore[arg-type]
|
||||
ax.set_ylabel(
|
||||
"Frequency"
|
||||
if self.ylabel is None
|
||||
else self.ylabel # type: ignore[arg-type]
|
||||
)
|
||||
|
||||
@property
|
||||
def orientation(self) -> PlottingOrientation:
|
||||
if self.kwds.get("orientation", None) == "horizontal":
|
||||
return "horizontal"
|
||||
else:
|
||||
return "vertical"
|
||||
|
||||
|
||||
class KdePlot(HistPlot):
|
||||
@property
|
||||
def _kind(self) -> Literal["kde"]:
|
||||
return "kde"
|
||||
|
||||
@property
|
||||
def orientation(self) -> Literal["vertical"]:
|
||||
return "vertical"
|
||||
|
||||
def __init__(
|
||||
self, data, bw_method=None, ind=None, *, weights=None, **kwargs
|
||||
) -> None:
|
||||
# Do not call LinePlot.__init__ which may fill nan
|
||||
MPLPlot.__init__(self, data, **kwargs) # pylint: disable=non-parent-init-called
|
||||
self.bw_method = bw_method
|
||||
self.ind = ind
|
||||
self.weights = weights
|
||||
|
||||
@staticmethod
|
||||
def _get_ind(y: np.ndarray, ind):
|
||||
if ind is None:
|
||||
# np.nanmax() and np.nanmin() ignores the missing values
|
||||
sample_range = np.nanmax(y) - np.nanmin(y)
|
||||
ind = np.linspace(
|
||||
np.nanmin(y) - 0.5 * sample_range,
|
||||
np.nanmax(y) + 0.5 * sample_range,
|
||||
1000,
|
||||
)
|
||||
elif is_integer(ind):
|
||||
sample_range = np.nanmax(y) - np.nanmin(y)
|
||||
ind = np.linspace(
|
||||
np.nanmin(y) - 0.5 * sample_range,
|
||||
np.nanmax(y) + 0.5 * sample_range,
|
||||
ind,
|
||||
)
|
||||
return ind
|
||||
|
||||
@classmethod
|
||||
# error: Signature of "_plot" incompatible with supertype "MPLPlot"
|
||||
def _plot( # type: ignore[override]
|
||||
cls,
|
||||
ax: Axes,
|
||||
y: np.ndarray,
|
||||
style=None,
|
||||
bw_method=None,
|
||||
ind=None,
|
||||
column_num=None,
|
||||
stacking_id: int | None = None,
|
||||
**kwds,
|
||||
):
|
||||
from scipy.stats import gaussian_kde
|
||||
|
||||
y = remove_na_arraylike(y)
|
||||
gkde = gaussian_kde(y, bw_method=bw_method)
|
||||
|
||||
y = gkde.evaluate(ind)
|
||||
lines = MPLPlot._plot(ax, ind, y, style=style, **kwds)
|
||||
return lines
|
||||
|
||||
def _make_plot_keywords(self, kwds: dict[str, Any], y: np.ndarray) -> None:
|
||||
kwds["bw_method"] = self.bw_method
|
||||
kwds["ind"] = type(self)._get_ind(y, ind=self.ind)
|
||||
|
||||
def _post_plot_logic(self, ax: Axes, data) -> None:
|
||||
ax.set_ylabel("Density")
|
||||
|
||||
|
||||
def _grouped_plot(
|
||||
plotf,
|
||||
data: Series | DataFrame,
|
||||
column=None,
|
||||
by=None,
|
||||
numeric_only: bool = True,
|
||||
figsize: tuple[float, float] | None = None,
|
||||
sharex: bool = True,
|
||||
sharey: bool = True,
|
||||
layout=None,
|
||||
rot: float = 0,
|
||||
ax=None,
|
||||
**kwargs,
|
||||
):
|
||||
# error: Non-overlapping equality check (left operand type: "Optional[Tuple[float,
|
||||
# float]]", right operand type: "Literal['default']")
|
||||
if figsize == "default": # type: ignore[comparison-overlap]
|
||||
# allowed to specify mpl default with 'default'
|
||||
raise ValueError(
|
||||
"figsize='default' is no longer supported. "
|
||||
"Specify figure size by tuple instead"
|
||||
)
|
||||
|
||||
grouped = data.groupby(by)
|
||||
if column is not None:
|
||||
grouped = grouped[column]
|
||||
|
||||
naxes = len(grouped)
|
||||
fig, axes = create_subplots(
|
||||
naxes=naxes, figsize=figsize, sharex=sharex, sharey=sharey, ax=ax, layout=layout
|
||||
)
|
||||
|
||||
_axes = flatten_axes(axes)
|
||||
|
||||
for i, (key, group) in enumerate(grouped):
|
||||
ax = _axes[i]
|
||||
if numeric_only and isinstance(group, ABCDataFrame):
|
||||
group = group._get_numeric_data()
|
||||
plotf(group, ax, **kwargs)
|
||||
ax.set_title(pprint_thing(key))
|
||||
|
||||
return fig, axes
|
||||
|
||||
|
||||
def _grouped_hist(
|
||||
data: Series | DataFrame,
|
||||
column=None,
|
||||
by=None,
|
||||
ax=None,
|
||||
bins: int = 50,
|
||||
figsize: tuple[float, float] | None = None,
|
||||
layout=None,
|
||||
sharex: bool = False,
|
||||
sharey: bool = False,
|
||||
rot: float = 90,
|
||||
grid: bool = True,
|
||||
xlabelsize: int | None = None,
|
||||
xrot=None,
|
||||
ylabelsize: int | None = None,
|
||||
yrot=None,
|
||||
legend: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Grouped histogram
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : Series/DataFrame
|
||||
column : object, optional
|
||||
by : object, optional
|
||||
ax : axes, optional
|
||||
bins : int, default 50
|
||||
figsize : tuple, optional
|
||||
layout : optional
|
||||
sharex : bool, default False
|
||||
sharey : bool, default False
|
||||
rot : float, default 90
|
||||
grid : bool, default True
|
||||
legend: : bool, default False
|
||||
kwargs : dict, keyword arguments passed to matplotlib.Axes.hist
|
||||
|
||||
Returns
|
||||
-------
|
||||
collection of Matplotlib Axes
|
||||
"""
|
||||
if legend:
|
||||
assert "label" not in kwargs
|
||||
if data.ndim == 1:
|
||||
kwargs["label"] = data.name
|
||||
elif column is None:
|
||||
kwargs["label"] = data.columns
|
||||
else:
|
||||
kwargs["label"] = column
|
||||
|
||||
def plot_group(group, ax) -> None:
|
||||
ax.hist(group.dropna().values, bins=bins, **kwargs)
|
||||
if legend:
|
||||
ax.legend()
|
||||
|
||||
if xrot is None:
|
||||
xrot = rot
|
||||
|
||||
fig, axes = _grouped_plot(
|
||||
plot_group,
|
||||
data,
|
||||
column=column,
|
||||
by=by,
|
||||
sharex=sharex,
|
||||
sharey=sharey,
|
||||
ax=ax,
|
||||
figsize=figsize,
|
||||
layout=layout,
|
||||
rot=rot,
|
||||
)
|
||||
|
||||
set_ticks_props(
|
||||
axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot
|
||||
)
|
||||
|
||||
maybe_adjust_figure(
|
||||
fig, bottom=0.15, top=0.9, left=0.1, right=0.9, hspace=0.5, wspace=0.3
|
||||
)
|
||||
return axes
|
||||
|
||||
|
||||
def hist_series(
|
||||
self: Series,
|
||||
by=None,
|
||||
ax=None,
|
||||
grid: bool = True,
|
||||
xlabelsize: int | None = None,
|
||||
xrot=None,
|
||||
ylabelsize: int | None = None,
|
||||
yrot=None,
|
||||
figsize: tuple[float, float] | None = None,
|
||||
bins: int = 10,
|
||||
legend: bool = False,
|
||||
**kwds,
|
||||
):
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
if legend and "label" in kwds:
|
||||
raise ValueError("Cannot use both legend and label")
|
||||
|
||||
if by is None:
|
||||
if kwds.get("layout", None) is not None:
|
||||
raise ValueError("The 'layout' keyword is not supported when 'by' is None")
|
||||
# hack until the plotting interface is a bit more unified
|
||||
fig = kwds.pop(
|
||||
"figure", plt.gcf() if plt.get_fignums() else plt.figure(figsize=figsize)
|
||||
)
|
||||
if figsize is not None and tuple(figsize) != tuple(fig.get_size_inches()):
|
||||
fig.set_size_inches(*figsize, forward=True)
|
||||
if ax is None:
|
||||
ax = fig.gca()
|
||||
elif ax.get_figure() != fig:
|
||||
raise AssertionError("passed axis not bound to passed figure")
|
||||
values = self.dropna().values
|
||||
if legend:
|
||||
kwds["label"] = self.name
|
||||
ax.hist(values, bins=bins, **kwds)
|
||||
if legend:
|
||||
ax.legend()
|
||||
ax.grid(grid)
|
||||
axes = np.array([ax])
|
||||
|
||||
# error: Argument 1 to "set_ticks_props" has incompatible type "ndarray[Any,
|
||||
# dtype[Any]]"; expected "Axes | Sequence[Axes]"
|
||||
set_ticks_props(
|
||||
axes, # type: ignore[arg-type]
|
||||
xlabelsize=xlabelsize,
|
||||
xrot=xrot,
|
||||
ylabelsize=ylabelsize,
|
||||
yrot=yrot,
|
||||
)
|
||||
|
||||
else:
|
||||
if "figure" in kwds:
|
||||
raise ValueError(
|
||||
"Cannot pass 'figure' when using the "
|
||||
"'by' argument, since a new 'Figure' instance will be created"
|
||||
)
|
||||
axes = _grouped_hist(
|
||||
self,
|
||||
by=by,
|
||||
ax=ax,
|
||||
grid=grid,
|
||||
figsize=figsize,
|
||||
bins=bins,
|
||||
xlabelsize=xlabelsize,
|
||||
xrot=xrot,
|
||||
ylabelsize=ylabelsize,
|
||||
yrot=yrot,
|
||||
legend=legend,
|
||||
**kwds,
|
||||
)
|
||||
|
||||
if hasattr(axes, "ndim"):
|
||||
if axes.ndim == 1 and len(axes) == 1:
|
||||
return axes[0]
|
||||
return axes
|
||||
|
||||
|
||||
def hist_frame(
|
||||
data: DataFrame,
|
||||
column=None,
|
||||
by=None,
|
||||
grid: bool = True,
|
||||
xlabelsize: int | None = None,
|
||||
xrot=None,
|
||||
ylabelsize: int | None = None,
|
||||
yrot=None,
|
||||
ax=None,
|
||||
sharex: bool = False,
|
||||
sharey: bool = False,
|
||||
figsize: tuple[float, float] | None = None,
|
||||
layout=None,
|
||||
bins: int = 10,
|
||||
legend: bool = False,
|
||||
**kwds,
|
||||
):
|
||||
if legend and "label" in kwds:
|
||||
raise ValueError("Cannot use both legend and label")
|
||||
if by is not None:
|
||||
axes = _grouped_hist(
|
||||
data,
|
||||
column=column,
|
||||
by=by,
|
||||
ax=ax,
|
||||
grid=grid,
|
||||
figsize=figsize,
|
||||
sharex=sharex,
|
||||
sharey=sharey,
|
||||
layout=layout,
|
||||
bins=bins,
|
||||
xlabelsize=xlabelsize,
|
||||
xrot=xrot,
|
||||
ylabelsize=ylabelsize,
|
||||
yrot=yrot,
|
||||
legend=legend,
|
||||
**kwds,
|
||||
)
|
||||
return axes
|
||||
|
||||
if column is not None:
|
||||
if not isinstance(column, (list, np.ndarray, ABCIndex)):
|
||||
column = [column]
|
||||
data = data[column]
|
||||
# GH32590
|
||||
data = data.select_dtypes(
|
||||
include=(np.number, "datetime64", "datetimetz"), exclude="timedelta"
|
||||
)
|
||||
naxes = len(data.columns)
|
||||
|
||||
if naxes == 0:
|
||||
raise ValueError(
|
||||
"hist method requires numerical or datetime columns, nothing to plot."
|
||||
)
|
||||
|
||||
fig, axes = create_subplots(
|
||||
naxes=naxes,
|
||||
ax=ax,
|
||||
squeeze=False,
|
||||
sharex=sharex,
|
||||
sharey=sharey,
|
||||
figsize=figsize,
|
||||
layout=layout,
|
||||
)
|
||||
_axes = flatten_axes(axes)
|
||||
|
||||
can_set_label = "label" not in kwds
|
||||
|
||||
for i, col in enumerate(data.columns):
|
||||
ax = _axes[i]
|
||||
if legend and can_set_label:
|
||||
kwds["label"] = col
|
||||
ax.hist(data[col].dropna().values, bins=bins, **kwds)
|
||||
ax.set_title(col)
|
||||
ax.grid(grid)
|
||||
if legend:
|
||||
ax.legend()
|
||||
|
||||
set_ticks_props(
|
||||
axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot
|
||||
)
|
||||
maybe_adjust_figure(fig, wspace=0.3, hspace=0.3)
|
||||
|
||||
return axes
|
@ -0,0 +1,481 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import random
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from matplotlib import patches
|
||||
import matplotlib.lines as mlines
|
||||
import numpy as np
|
||||
|
||||
from pandas.core.dtypes.missing import notna
|
||||
|
||||
from pandas.io.formats.printing import pprint_thing
|
||||
from pandas.plotting._matplotlib.style import get_standard_colors
|
||||
from pandas.plotting._matplotlib.tools import (
|
||||
create_subplots,
|
||||
do_adjust_figure,
|
||||
maybe_adjust_figure,
|
||||
set_ticks_props,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Hashable
|
||||
|
||||
from matplotlib.axes import Axes
|
||||
from matplotlib.figure import Figure
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Index,
|
||||
Series,
|
||||
)
|
||||
|
||||
|
||||
def scatter_matrix(
|
||||
frame: DataFrame,
|
||||
alpha: float = 0.5,
|
||||
figsize: tuple[float, float] | None = None,
|
||||
ax=None,
|
||||
grid: bool = False,
|
||||
diagonal: str = "hist",
|
||||
marker: str = ".",
|
||||
density_kwds=None,
|
||||
hist_kwds=None,
|
||||
range_padding: float = 0.05,
|
||||
**kwds,
|
||||
):
|
||||
df = frame._get_numeric_data()
|
||||
n = df.columns.size
|
||||
naxes = n * n
|
||||
fig, axes = create_subplots(naxes=naxes, figsize=figsize, ax=ax, squeeze=False)
|
||||
|
||||
# no gaps between subplots
|
||||
maybe_adjust_figure(fig, wspace=0, hspace=0)
|
||||
|
||||
mask = notna(df)
|
||||
|
||||
marker = _get_marker_compat(marker)
|
||||
|
||||
hist_kwds = hist_kwds or {}
|
||||
density_kwds = density_kwds or {}
|
||||
|
||||
# GH 14855
|
||||
kwds.setdefault("edgecolors", "none")
|
||||
|
||||
boundaries_list = []
|
||||
for a in df.columns:
|
||||
values = df[a].values[mask[a].values]
|
||||
rmin_, rmax_ = np.min(values), np.max(values)
|
||||
rdelta_ext = (rmax_ - rmin_) * range_padding / 2
|
||||
boundaries_list.append((rmin_ - rdelta_ext, rmax_ + rdelta_ext))
|
||||
|
||||
for i, a in enumerate(df.columns):
|
||||
for j, b in enumerate(df.columns):
|
||||
ax = axes[i, j]
|
||||
|
||||
if i == j:
|
||||
values = df[a].values[mask[a].values]
|
||||
|
||||
# Deal with the diagonal by drawing a histogram there.
|
||||
if diagonal == "hist":
|
||||
ax.hist(values, **hist_kwds)
|
||||
|
||||
elif diagonal in ("kde", "density"):
|
||||
from scipy.stats import gaussian_kde
|
||||
|
||||
y = values
|
||||
gkde = gaussian_kde(y)
|
||||
ind = np.linspace(y.min(), y.max(), 1000)
|
||||
ax.plot(ind, gkde.evaluate(ind), **density_kwds)
|
||||
|
||||
ax.set_xlim(boundaries_list[i])
|
||||
|
||||
else:
|
||||
common = (mask[a] & mask[b]).values
|
||||
|
||||
ax.scatter(
|
||||
df[b][common], df[a][common], marker=marker, alpha=alpha, **kwds
|
||||
)
|
||||
|
||||
ax.set_xlim(boundaries_list[j])
|
||||
ax.set_ylim(boundaries_list[i])
|
||||
|
||||
ax.set_xlabel(b)
|
||||
ax.set_ylabel(a)
|
||||
|
||||
if j != 0:
|
||||
ax.yaxis.set_visible(False)
|
||||
if i != n - 1:
|
||||
ax.xaxis.set_visible(False)
|
||||
|
||||
if len(df.columns) > 1:
|
||||
lim1 = boundaries_list[0]
|
||||
locs = axes[0][1].yaxis.get_majorticklocs()
|
||||
locs = locs[(lim1[0] <= locs) & (locs <= lim1[1])]
|
||||
adj = (locs - lim1[0]) / (lim1[1] - lim1[0])
|
||||
|
||||
lim0 = axes[0][0].get_ylim()
|
||||
adj = adj * (lim0[1] - lim0[0]) + lim0[0]
|
||||
axes[0][0].yaxis.set_ticks(adj)
|
||||
|
||||
if np.all(locs == locs.astype(int)):
|
||||
# if all ticks are int
|
||||
locs = locs.astype(int)
|
||||
axes[0][0].yaxis.set_ticklabels(locs)
|
||||
|
||||
set_ticks_props(axes, xlabelsize=8, xrot=90, ylabelsize=8, yrot=0)
|
||||
|
||||
return axes
|
||||
|
||||
|
||||
def _get_marker_compat(marker):
|
||||
if marker not in mlines.lineMarkers:
|
||||
return "o"
|
||||
return marker
|
||||
|
||||
|
||||
def radviz(
|
||||
frame: DataFrame,
|
||||
class_column,
|
||||
ax: Axes | None = None,
|
||||
color=None,
|
||||
colormap=None,
|
||||
**kwds,
|
||||
) -> Axes:
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def normalize(series):
|
||||
a = min(series)
|
||||
b = max(series)
|
||||
return (series - a) / (b - a)
|
||||
|
||||
n = len(frame)
|
||||
classes = frame[class_column].drop_duplicates()
|
||||
class_col = frame[class_column]
|
||||
df = frame.drop(class_column, axis=1).apply(normalize)
|
||||
|
||||
if ax is None:
|
||||
ax = plt.gca()
|
||||
ax.set_xlim(-1, 1)
|
||||
ax.set_ylim(-1, 1)
|
||||
|
||||
to_plot: dict[Hashable, list[list]] = {}
|
||||
colors = get_standard_colors(
|
||||
num_colors=len(classes), colormap=colormap, color_type="random", color=color
|
||||
)
|
||||
|
||||
for kls in classes:
|
||||
to_plot[kls] = [[], []]
|
||||
|
||||
m = len(frame.columns) - 1
|
||||
s = np.array(
|
||||
[(np.cos(t), np.sin(t)) for t in [2 * np.pi * (i / m) for i in range(m)]]
|
||||
)
|
||||
|
||||
for i in range(n):
|
||||
row = df.iloc[i].values
|
||||
row_ = np.repeat(np.expand_dims(row, axis=1), 2, axis=1)
|
||||
y = (s * row_).sum(axis=0) / row.sum()
|
||||
kls = class_col.iat[i]
|
||||
to_plot[kls][0].append(y[0])
|
||||
to_plot[kls][1].append(y[1])
|
||||
|
||||
for i, kls in enumerate(classes):
|
||||
ax.scatter(
|
||||
to_plot[kls][0],
|
||||
to_plot[kls][1],
|
||||
color=colors[i],
|
||||
label=pprint_thing(kls),
|
||||
**kwds,
|
||||
)
|
||||
ax.legend()
|
||||
|
||||
ax.add_patch(patches.Circle((0.0, 0.0), radius=1.0, facecolor="none"))
|
||||
|
||||
for xy, name in zip(s, df.columns):
|
||||
ax.add_patch(patches.Circle(xy, radius=0.025, facecolor="gray"))
|
||||
|
||||
if xy[0] < 0.0 and xy[1] < 0.0:
|
||||
ax.text(
|
||||
xy[0] - 0.025, xy[1] - 0.025, name, ha="right", va="top", size="small"
|
||||
)
|
||||
elif xy[0] < 0.0 <= xy[1]:
|
||||
ax.text(
|
||||
xy[0] - 0.025,
|
||||
xy[1] + 0.025,
|
||||
name,
|
||||
ha="right",
|
||||
va="bottom",
|
||||
size="small",
|
||||
)
|
||||
elif xy[1] < 0.0 <= xy[0]:
|
||||
ax.text(
|
||||
xy[0] + 0.025, xy[1] - 0.025, name, ha="left", va="top", size="small"
|
||||
)
|
||||
elif xy[0] >= 0.0 and xy[1] >= 0.0:
|
||||
ax.text(
|
||||
xy[0] + 0.025, xy[1] + 0.025, name, ha="left", va="bottom", size="small"
|
||||
)
|
||||
|
||||
ax.axis("equal")
|
||||
return ax
|
||||
|
||||
|
||||
def andrews_curves(
|
||||
frame: DataFrame,
|
||||
class_column,
|
||||
ax: Axes | None = None,
|
||||
samples: int = 200,
|
||||
color=None,
|
||||
colormap=None,
|
||||
**kwds,
|
||||
) -> Axes:
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def function(amplitudes):
|
||||
def f(t):
|
||||
x1 = amplitudes[0]
|
||||
result = x1 / np.sqrt(2.0)
|
||||
|
||||
# Take the rest of the coefficients and resize them
|
||||
# appropriately. Take a copy of amplitudes as otherwise numpy
|
||||
# deletes the element from amplitudes itself.
|
||||
coeffs = np.delete(np.copy(amplitudes), 0)
|
||||
coeffs = np.resize(coeffs, (int((coeffs.size + 1) / 2), 2))
|
||||
|
||||
# Generate the harmonics and arguments for the sin and cos
|
||||
# functions.
|
||||
harmonics = np.arange(0, coeffs.shape[0]) + 1
|
||||
trig_args = np.outer(harmonics, t)
|
||||
|
||||
result += np.sum(
|
||||
coeffs[:, 0, np.newaxis] * np.sin(trig_args)
|
||||
+ coeffs[:, 1, np.newaxis] * np.cos(trig_args),
|
||||
axis=0,
|
||||
)
|
||||
return result
|
||||
|
||||
return f
|
||||
|
||||
n = len(frame)
|
||||
class_col = frame[class_column]
|
||||
classes = frame[class_column].drop_duplicates()
|
||||
df = frame.drop(class_column, axis=1)
|
||||
t = np.linspace(-np.pi, np.pi, samples)
|
||||
used_legends: set[str] = set()
|
||||
|
||||
color_values = get_standard_colors(
|
||||
num_colors=len(classes), colormap=colormap, color_type="random", color=color
|
||||
)
|
||||
colors = dict(zip(classes, color_values))
|
||||
if ax is None:
|
||||
ax = plt.gca()
|
||||
ax.set_xlim(-np.pi, np.pi)
|
||||
for i in range(n):
|
||||
row = df.iloc[i].values
|
||||
f = function(row)
|
||||
y = f(t)
|
||||
kls = class_col.iat[i]
|
||||
label = pprint_thing(kls)
|
||||
if label not in used_legends:
|
||||
used_legends.add(label)
|
||||
ax.plot(t, y, color=colors[kls], label=label, **kwds)
|
||||
else:
|
||||
ax.plot(t, y, color=colors[kls], **kwds)
|
||||
|
||||
ax.legend(loc="upper right")
|
||||
ax.grid()
|
||||
return ax
|
||||
|
||||
|
||||
def bootstrap_plot(
|
||||
series: Series,
|
||||
fig: Figure | None = None,
|
||||
size: int = 50,
|
||||
samples: int = 500,
|
||||
**kwds,
|
||||
) -> Figure:
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# TODO: is the failure mentioned below still relevant?
|
||||
# random.sample(ndarray, int) fails on python 3.3, sigh
|
||||
data = list(series.values)
|
||||
samplings = [random.sample(data, size) for _ in range(samples)]
|
||||
|
||||
means = np.array([np.mean(sampling) for sampling in samplings])
|
||||
medians = np.array([np.median(sampling) for sampling in samplings])
|
||||
midranges = np.array(
|
||||
[(min(sampling) + max(sampling)) * 0.5 for sampling in samplings]
|
||||
)
|
||||
if fig is None:
|
||||
fig = plt.figure()
|
||||
x = list(range(samples))
|
||||
axes = []
|
||||
ax1 = fig.add_subplot(2, 3, 1)
|
||||
ax1.set_xlabel("Sample")
|
||||
axes.append(ax1)
|
||||
ax1.plot(x, means, **kwds)
|
||||
ax2 = fig.add_subplot(2, 3, 2)
|
||||
ax2.set_xlabel("Sample")
|
||||
axes.append(ax2)
|
||||
ax2.plot(x, medians, **kwds)
|
||||
ax3 = fig.add_subplot(2, 3, 3)
|
||||
ax3.set_xlabel("Sample")
|
||||
axes.append(ax3)
|
||||
ax3.plot(x, midranges, **kwds)
|
||||
ax4 = fig.add_subplot(2, 3, 4)
|
||||
ax4.set_xlabel("Mean")
|
||||
axes.append(ax4)
|
||||
ax4.hist(means, **kwds)
|
||||
ax5 = fig.add_subplot(2, 3, 5)
|
||||
ax5.set_xlabel("Median")
|
||||
axes.append(ax5)
|
||||
ax5.hist(medians, **kwds)
|
||||
ax6 = fig.add_subplot(2, 3, 6)
|
||||
ax6.set_xlabel("Midrange")
|
||||
axes.append(ax6)
|
||||
ax6.hist(midranges, **kwds)
|
||||
for axis in axes:
|
||||
plt.setp(axis.get_xticklabels(), fontsize=8)
|
||||
plt.setp(axis.get_yticklabels(), fontsize=8)
|
||||
if do_adjust_figure(fig):
|
||||
plt.tight_layout()
|
||||
return fig
|
||||
|
||||
|
||||
def parallel_coordinates(
|
||||
frame: DataFrame,
|
||||
class_column,
|
||||
cols=None,
|
||||
ax: Axes | None = None,
|
||||
color=None,
|
||||
use_columns: bool = False,
|
||||
xticks=None,
|
||||
colormap=None,
|
||||
axvlines: bool = True,
|
||||
axvlines_kwds=None,
|
||||
sort_labels: bool = False,
|
||||
**kwds,
|
||||
) -> Axes:
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
if axvlines_kwds is None:
|
||||
axvlines_kwds = {"linewidth": 1, "color": "black"}
|
||||
|
||||
n = len(frame)
|
||||
classes = frame[class_column].drop_duplicates()
|
||||
class_col = frame[class_column]
|
||||
|
||||
if cols is None:
|
||||
df = frame.drop(class_column, axis=1)
|
||||
else:
|
||||
df = frame[cols]
|
||||
|
||||
used_legends: set[str] = set()
|
||||
|
||||
ncols = len(df.columns)
|
||||
|
||||
# determine values to use for xticks
|
||||
x: list[int] | Index
|
||||
if use_columns is True:
|
||||
if not np.all(np.isreal(list(df.columns))):
|
||||
raise ValueError("Columns must be numeric to be used as xticks")
|
||||
x = df.columns
|
||||
elif xticks is not None:
|
||||
if not np.all(np.isreal(xticks)):
|
||||
raise ValueError("xticks specified must be numeric")
|
||||
if len(xticks) != ncols:
|
||||
raise ValueError("Length of xticks must match number of columns")
|
||||
x = xticks
|
||||
else:
|
||||
x = list(range(ncols))
|
||||
|
||||
if ax is None:
|
||||
ax = plt.gca()
|
||||
|
||||
color_values = get_standard_colors(
|
||||
num_colors=len(classes), colormap=colormap, color_type="random", color=color
|
||||
)
|
||||
|
||||
if sort_labels:
|
||||
classes = sorted(classes)
|
||||
color_values = sorted(color_values)
|
||||
colors = dict(zip(classes, color_values))
|
||||
|
||||
for i in range(n):
|
||||
y = df.iloc[i].values
|
||||
kls = class_col.iat[i]
|
||||
label = pprint_thing(kls)
|
||||
if label not in used_legends:
|
||||
used_legends.add(label)
|
||||
ax.plot(x, y, color=colors[kls], label=label, **kwds)
|
||||
else:
|
||||
ax.plot(x, y, color=colors[kls], **kwds)
|
||||
|
||||
if axvlines:
|
||||
for i in x:
|
||||
ax.axvline(i, **axvlines_kwds)
|
||||
|
||||
ax.set_xticks(x)
|
||||
ax.set_xticklabels(df.columns)
|
||||
ax.set_xlim(x[0], x[-1])
|
||||
ax.legend(loc="upper right")
|
||||
ax.grid()
|
||||
return ax
|
||||
|
||||
|
||||
def lag_plot(series: Series, lag: int = 1, ax: Axes | None = None, **kwds) -> Axes:
|
||||
# workaround because `c='b'` is hardcoded in matplotlib's scatter method
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
kwds.setdefault("c", plt.rcParams["patch.facecolor"])
|
||||
|
||||
data = series.values
|
||||
y1 = data[:-lag]
|
||||
y2 = data[lag:]
|
||||
if ax is None:
|
||||
ax = plt.gca()
|
||||
ax.set_xlabel("y(t)")
|
||||
ax.set_ylabel(f"y(t + {lag})")
|
||||
ax.scatter(y1, y2, **kwds)
|
||||
return ax
|
||||
|
||||
|
||||
def autocorrelation_plot(series: Series, ax: Axes | None = None, **kwds) -> Axes:
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
n = len(series)
|
||||
data = np.asarray(series)
|
||||
if ax is None:
|
||||
ax = plt.gca()
|
||||
ax.set_xlim(1, n)
|
||||
ax.set_ylim(-1.0, 1.0)
|
||||
mean = np.mean(data)
|
||||
c0 = np.sum((data - mean) ** 2) / n
|
||||
|
||||
def r(h):
|
||||
return ((data[: n - h] - mean) * (data[h:] - mean)).sum() / n / c0
|
||||
|
||||
x = np.arange(n) + 1
|
||||
y = [r(loc) for loc in x]
|
||||
z95 = 1.959963984540054
|
||||
z99 = 2.5758293035489004
|
||||
ax.axhline(y=z99 / np.sqrt(n), linestyle="--", color="grey")
|
||||
ax.axhline(y=z95 / np.sqrt(n), color="grey")
|
||||
ax.axhline(y=0.0, color="black")
|
||||
ax.axhline(y=-z95 / np.sqrt(n), color="grey")
|
||||
ax.axhline(y=-z99 / np.sqrt(n), linestyle="--", color="grey")
|
||||
ax.set_xlabel("Lag")
|
||||
ax.set_ylabel("Autocorrelation")
|
||||
ax.plot(x, y, **kwds)
|
||||
if "label" in kwds:
|
||||
ax.legend()
|
||||
ax.grid()
|
||||
return ax
|
||||
|
||||
|
||||
def unpack_single_str_list(keys):
|
||||
# GH 42795
|
||||
if isinstance(keys, list) and len(keys) == 1:
|
||||
keys = keys[0]
|
||||
return keys
|
@ -0,0 +1,278 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import (
|
||||
Collection,
|
||||
Iterator,
|
||||
)
|
||||
import itertools
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
cast,
|
||||
)
|
||||
import warnings
|
||||
|
||||
import matplotlib as mpl
|
||||
import matplotlib.colors
|
||||
import numpy as np
|
||||
|
||||
from pandas._typing import MatplotlibColor as Color
|
||||
from pandas.util._exceptions import find_stack_level
|
||||
|
||||
from pandas.core.dtypes.common import is_list_like
|
||||
|
||||
import pandas.core.common as com
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from matplotlib.colors import Colormap
|
||||
|
||||
|
||||
def get_standard_colors(
|
||||
num_colors: int,
|
||||
colormap: Colormap | None = None,
|
||||
color_type: str = "default",
|
||||
color: dict[str, Color] | Color | Collection[Color] | None = None,
|
||||
):
|
||||
"""
|
||||
Get standard colors based on `colormap`, `color_type` or `color` inputs.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
num_colors : int
|
||||
Minimum number of colors to be returned.
|
||||
Ignored if `color` is a dictionary.
|
||||
colormap : :py:class:`matplotlib.colors.Colormap`, optional
|
||||
Matplotlib colormap.
|
||||
When provided, the resulting colors will be derived from the colormap.
|
||||
color_type : {"default", "random"}, optional
|
||||
Type of colors to derive. Used if provided `color` and `colormap` are None.
|
||||
Ignored if either `color` or `colormap` are not None.
|
||||
color : dict or str or sequence, optional
|
||||
Color(s) to be used for deriving sequence of colors.
|
||||
Can be either be a dictionary, or a single color (single color string,
|
||||
or sequence of floats representing a single color),
|
||||
or a sequence of colors.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict or list
|
||||
Standard colors. Can either be a mapping if `color` was a dictionary,
|
||||
or a list of colors with a length of `num_colors` or more.
|
||||
|
||||
Warns
|
||||
-----
|
||||
UserWarning
|
||||
If both `colormap` and `color` are provided.
|
||||
Parameter `color` will override.
|
||||
"""
|
||||
if isinstance(color, dict):
|
||||
return color
|
||||
|
||||
colors = _derive_colors(
|
||||
color=color,
|
||||
colormap=colormap,
|
||||
color_type=color_type,
|
||||
num_colors=num_colors,
|
||||
)
|
||||
|
||||
return list(_cycle_colors(colors, num_colors=num_colors))
|
||||
|
||||
|
||||
def _derive_colors(
|
||||
*,
|
||||
color: Color | Collection[Color] | None,
|
||||
colormap: str | Colormap | None,
|
||||
color_type: str,
|
||||
num_colors: int,
|
||||
) -> list[Color]:
|
||||
"""
|
||||
Derive colors from either `colormap`, `color_type` or `color` inputs.
|
||||
|
||||
Get a list of colors either from `colormap`, or from `color`,
|
||||
or from `color_type` (if both `colormap` and `color` are None).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
color : str or sequence, optional
|
||||
Color(s) to be used for deriving sequence of colors.
|
||||
Can be either be a single color (single color string, or sequence of floats
|
||||
representing a single color), or a sequence of colors.
|
||||
colormap : :py:class:`matplotlib.colors.Colormap`, optional
|
||||
Matplotlib colormap.
|
||||
When provided, the resulting colors will be derived from the colormap.
|
||||
color_type : {"default", "random"}, optional
|
||||
Type of colors to derive. Used if provided `color` and `colormap` are None.
|
||||
Ignored if either `color` or `colormap`` are not None.
|
||||
num_colors : int
|
||||
Number of colors to be extracted.
|
||||
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
List of colors extracted.
|
||||
|
||||
Warns
|
||||
-----
|
||||
UserWarning
|
||||
If both `colormap` and `color` are provided.
|
||||
Parameter `color` will override.
|
||||
"""
|
||||
if color is None and colormap is not None:
|
||||
return _get_colors_from_colormap(colormap, num_colors=num_colors)
|
||||
elif color is not None:
|
||||
if colormap is not None:
|
||||
warnings.warn(
|
||||
"'color' and 'colormap' cannot be used simultaneously. Using 'color'",
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
return _get_colors_from_color(color)
|
||||
else:
|
||||
return _get_colors_from_color_type(color_type, num_colors=num_colors)
|
||||
|
||||
|
||||
def _cycle_colors(colors: list[Color], num_colors: int) -> Iterator[Color]:
|
||||
"""Cycle colors until achieving max of `num_colors` or length of `colors`.
|
||||
|
||||
Extra colors will be ignored by matplotlib if there are more colors
|
||||
than needed and nothing needs to be done here.
|
||||
"""
|
||||
max_colors = max(num_colors, len(colors))
|
||||
yield from itertools.islice(itertools.cycle(colors), max_colors)
|
||||
|
||||
|
||||
def _get_colors_from_colormap(
|
||||
colormap: str | Colormap,
|
||||
num_colors: int,
|
||||
) -> list[Color]:
|
||||
"""Get colors from colormap."""
|
||||
cmap = _get_cmap_instance(colormap)
|
||||
return [cmap(num) for num in np.linspace(0, 1, num=num_colors)]
|
||||
|
||||
|
||||
def _get_cmap_instance(colormap: str | Colormap) -> Colormap:
|
||||
"""Get instance of matplotlib colormap."""
|
||||
if isinstance(colormap, str):
|
||||
cmap = colormap
|
||||
colormap = mpl.colormaps[colormap]
|
||||
if colormap is None:
|
||||
raise ValueError(f"Colormap {cmap} is not recognized")
|
||||
return colormap
|
||||
|
||||
|
||||
def _get_colors_from_color(
|
||||
color: Color | Collection[Color],
|
||||
) -> list[Color]:
|
||||
"""Get colors from user input color."""
|
||||
if len(color) == 0:
|
||||
raise ValueError(f"Invalid color argument: {color}")
|
||||
|
||||
if _is_single_color(color):
|
||||
color = cast(Color, color)
|
||||
return [color]
|
||||
|
||||
color = cast(Collection[Color], color)
|
||||
return list(_gen_list_of_colors_from_iterable(color))
|
||||
|
||||
|
||||
def _is_single_color(color: Color | Collection[Color]) -> bool:
|
||||
"""Check if `color` is a single color, not a sequence of colors.
|
||||
|
||||
Single color is of these kinds:
|
||||
- Named color "red", "C0", "firebrick"
|
||||
- Alias "g"
|
||||
- Sequence of floats, such as (0.1, 0.2, 0.3) or (0.1, 0.2, 0.3, 0.4).
|
||||
|
||||
See Also
|
||||
--------
|
||||
_is_single_string_color
|
||||
"""
|
||||
if isinstance(color, str) and _is_single_string_color(color):
|
||||
# GH #36972
|
||||
return True
|
||||
|
||||
if _is_floats_color(color):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def _gen_list_of_colors_from_iterable(color: Collection[Color]) -> Iterator[Color]:
|
||||
"""
|
||||
Yield colors from string of several letters or from collection of colors.
|
||||
"""
|
||||
for x in color:
|
||||
if _is_single_color(x):
|
||||
yield x
|
||||
else:
|
||||
raise ValueError(f"Invalid color {x}")
|
||||
|
||||
|
||||
def _is_floats_color(color: Color | Collection[Color]) -> bool:
|
||||
"""Check if color comprises a sequence of floats representing color."""
|
||||
return bool(
|
||||
is_list_like(color)
|
||||
and (len(color) == 3 or len(color) == 4)
|
||||
and all(isinstance(x, (int, float)) for x in color)
|
||||
)
|
||||
|
||||
|
||||
def _get_colors_from_color_type(color_type: str, num_colors: int) -> list[Color]:
|
||||
"""Get colors from user input color type."""
|
||||
if color_type == "default":
|
||||
return _get_default_colors(num_colors)
|
||||
elif color_type == "random":
|
||||
return _get_random_colors(num_colors)
|
||||
else:
|
||||
raise ValueError("color_type must be either 'default' or 'random'")
|
||||
|
||||
|
||||
def _get_default_colors(num_colors: int) -> list[Color]:
|
||||
"""Get `num_colors` of default colors from matplotlib rc params."""
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
colors = [c["color"] for c in plt.rcParams["axes.prop_cycle"]]
|
||||
return colors[0:num_colors]
|
||||
|
||||
|
||||
def _get_random_colors(num_colors: int) -> list[Color]:
|
||||
"""Get `num_colors` of random colors."""
|
||||
return [_random_color(num) for num in range(num_colors)]
|
||||
|
||||
|
||||
def _random_color(column: int) -> list[float]:
|
||||
"""Get a random color represented as a list of length 3"""
|
||||
# GH17525 use common._random_state to avoid resetting the seed
|
||||
rs = com.random_state(column)
|
||||
return rs.rand(3).tolist()
|
||||
|
||||
|
||||
def _is_single_string_color(color: Color) -> bool:
|
||||
"""Check if `color` is a single string color.
|
||||
|
||||
Examples of single string colors:
|
||||
- 'r'
|
||||
- 'g'
|
||||
- 'red'
|
||||
- 'green'
|
||||
- 'C3'
|
||||
- 'firebrick'
|
||||
|
||||
Parameters
|
||||
----------
|
||||
color : Color
|
||||
Color string or sequence of floats.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if `color` looks like a valid color.
|
||||
False otherwise.
|
||||
"""
|
||||
conv = matplotlib.colors.ColorConverter()
|
||||
try:
|
||||
# error: Argument 1 to "to_rgba" of "ColorConverter" has incompatible type
|
||||
# "str | Sequence[float]"; expected "tuple[float, float, float] | ..."
|
||||
conv.to_rgba(color) # type: ignore[arg-type]
|
||||
except ValueError:
|
||||
return False
|
||||
else:
|
||||
return True
|
@ -0,0 +1,370 @@
|
||||
# TODO: Use the fact that axis can have units to simplify the process
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import functools
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
cast,
|
||||
)
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas._libs.tslibs import (
|
||||
BaseOffset,
|
||||
Period,
|
||||
to_offset,
|
||||
)
|
||||
from pandas._libs.tslibs.dtypes import (
|
||||
OFFSET_TO_PERIOD_FREQSTR,
|
||||
FreqGroup,
|
||||
)
|
||||
|
||||
from pandas.core.dtypes.generic import (
|
||||
ABCDatetimeIndex,
|
||||
ABCPeriodIndex,
|
||||
ABCTimedeltaIndex,
|
||||
)
|
||||
|
||||
from pandas.io.formats.printing import pprint_thing
|
||||
from pandas.plotting._matplotlib.converter import (
|
||||
TimeSeries_DateFormatter,
|
||||
TimeSeries_DateLocator,
|
||||
TimeSeries_TimedeltaFormatter,
|
||||
)
|
||||
from pandas.tseries.frequencies import (
|
||||
get_period_alias,
|
||||
is_subperiod,
|
||||
is_superperiod,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datetime import timedelta
|
||||
|
||||
from matplotlib.axes import Axes
|
||||
|
||||
from pandas._typing import NDFrameT
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
DatetimeIndex,
|
||||
Index,
|
||||
PeriodIndex,
|
||||
Series,
|
||||
)
|
||||
|
||||
# ---------------------------------------------------------------------
|
||||
# Plotting functions and monkey patches
|
||||
|
||||
|
||||
def maybe_resample(series: Series, ax: Axes, kwargs: dict[str, Any]):
|
||||
# resample against axes freq if necessary
|
||||
|
||||
if "how" in kwargs:
|
||||
raise ValueError(
|
||||
"'how' is not a valid keyword for plotting functions. If plotting "
|
||||
"multiple objects on shared axes, resample manually first."
|
||||
)
|
||||
|
||||
freq, ax_freq = _get_freq(ax, series)
|
||||
|
||||
if freq is None: # pragma: no cover
|
||||
raise ValueError("Cannot use dynamic axis without frequency info")
|
||||
|
||||
# Convert DatetimeIndex to PeriodIndex
|
||||
if isinstance(series.index, ABCDatetimeIndex):
|
||||
series = series.to_period(freq=freq)
|
||||
|
||||
if ax_freq is not None and freq != ax_freq:
|
||||
if is_superperiod(freq, ax_freq): # upsample input
|
||||
series = series.copy()
|
||||
# error: "Index" has no attribute "asfreq"
|
||||
series.index = series.index.asfreq( # type: ignore[attr-defined]
|
||||
ax_freq, how="s"
|
||||
)
|
||||
freq = ax_freq
|
||||
elif _is_sup(freq, ax_freq): # one is weekly
|
||||
# Resampling with PeriodDtype is deprecated, so we convert to
|
||||
# DatetimeIndex, resample, then convert back.
|
||||
ser_ts = series.to_timestamp()
|
||||
ser_d = ser_ts.resample("D").last().dropna()
|
||||
ser_freq = ser_d.resample(ax_freq).last().dropna()
|
||||
series = ser_freq.to_period(ax_freq)
|
||||
freq = ax_freq
|
||||
elif is_subperiod(freq, ax_freq) or _is_sub(freq, ax_freq):
|
||||
_upsample_others(ax, freq, kwargs)
|
||||
else: # pragma: no cover
|
||||
raise ValueError("Incompatible frequency conversion")
|
||||
return freq, series
|
||||
|
||||
|
||||
def _is_sub(f1: str, f2: str) -> bool:
|
||||
return (f1.startswith("W") and is_subperiod("D", f2)) or (
|
||||
f2.startswith("W") and is_subperiod(f1, "D")
|
||||
)
|
||||
|
||||
|
||||
def _is_sup(f1: str, f2: str) -> bool:
|
||||
return (f1.startswith("W") and is_superperiod("D", f2)) or (
|
||||
f2.startswith("W") and is_superperiod(f1, "D")
|
||||
)
|
||||
|
||||
|
||||
def _upsample_others(ax: Axes, freq: BaseOffset, kwargs: dict[str, Any]) -> None:
|
||||
legend = ax.get_legend()
|
||||
lines, labels = _replot_ax(ax, freq)
|
||||
_replot_ax(ax, freq)
|
||||
|
||||
other_ax = None
|
||||
if hasattr(ax, "left_ax"):
|
||||
other_ax = ax.left_ax
|
||||
if hasattr(ax, "right_ax"):
|
||||
other_ax = ax.right_ax
|
||||
|
||||
if other_ax is not None:
|
||||
rlines, rlabels = _replot_ax(other_ax, freq)
|
||||
lines.extend(rlines)
|
||||
labels.extend(rlabels)
|
||||
|
||||
if legend is not None and kwargs.get("legend", True) and len(lines) > 0:
|
||||
title: str | None = legend.get_title().get_text()
|
||||
if title == "None":
|
||||
title = None
|
||||
ax.legend(lines, labels, loc="best", title=title)
|
||||
|
||||
|
||||
def _replot_ax(ax: Axes, freq: BaseOffset):
|
||||
data = getattr(ax, "_plot_data", None)
|
||||
|
||||
# clear current axes and data
|
||||
# TODO #54485
|
||||
ax._plot_data = [] # type: ignore[attr-defined]
|
||||
ax.clear()
|
||||
|
||||
decorate_axes(ax, freq)
|
||||
|
||||
lines = []
|
||||
labels = []
|
||||
if data is not None:
|
||||
for series, plotf, kwds in data:
|
||||
series = series.copy()
|
||||
idx = series.index.asfreq(freq, how="S")
|
||||
series.index = idx
|
||||
# TODO #54485
|
||||
ax._plot_data.append((series, plotf, kwds)) # type: ignore[attr-defined]
|
||||
|
||||
# for tsplot
|
||||
if isinstance(plotf, str):
|
||||
from pandas.plotting._matplotlib import PLOT_CLASSES
|
||||
|
||||
plotf = PLOT_CLASSES[plotf]._plot
|
||||
|
||||
lines.append(plotf(ax, series.index._mpl_repr(), series.values, **kwds)[0])
|
||||
labels.append(pprint_thing(series.name))
|
||||
|
||||
return lines, labels
|
||||
|
||||
|
||||
def decorate_axes(ax: Axes, freq: BaseOffset) -> None:
|
||||
"""Initialize axes for time-series plotting"""
|
||||
if not hasattr(ax, "_plot_data"):
|
||||
# TODO #54485
|
||||
ax._plot_data = [] # type: ignore[attr-defined]
|
||||
|
||||
# TODO #54485
|
||||
ax.freq = freq # type: ignore[attr-defined]
|
||||
xaxis = ax.get_xaxis()
|
||||
# TODO #54485
|
||||
xaxis.freq = freq # type: ignore[attr-defined]
|
||||
|
||||
|
||||
def _get_ax_freq(ax: Axes):
|
||||
"""
|
||||
Get the freq attribute of the ax object if set.
|
||||
Also checks shared axes (eg when using secondary yaxis, sharex=True
|
||||
or twinx)
|
||||
"""
|
||||
ax_freq = getattr(ax, "freq", None)
|
||||
if ax_freq is None:
|
||||
# check for left/right ax in case of secondary yaxis
|
||||
if hasattr(ax, "left_ax"):
|
||||
ax_freq = getattr(ax.left_ax, "freq", None)
|
||||
elif hasattr(ax, "right_ax"):
|
||||
ax_freq = getattr(ax.right_ax, "freq", None)
|
||||
if ax_freq is None:
|
||||
# check if a shared ax (sharex/twinx) has already freq set
|
||||
shared_axes = ax.get_shared_x_axes().get_siblings(ax)
|
||||
if len(shared_axes) > 1:
|
||||
for shared_ax in shared_axes:
|
||||
ax_freq = getattr(shared_ax, "freq", None)
|
||||
if ax_freq is not None:
|
||||
break
|
||||
return ax_freq
|
||||
|
||||
|
||||
def _get_period_alias(freq: timedelta | BaseOffset | str) -> str | None:
|
||||
if isinstance(freq, BaseOffset):
|
||||
freqstr = freq.name
|
||||
else:
|
||||
freqstr = to_offset(freq, is_period=True).rule_code
|
||||
|
||||
return get_period_alias(freqstr)
|
||||
|
||||
|
||||
def _get_freq(ax: Axes, series: Series):
|
||||
# get frequency from data
|
||||
freq = getattr(series.index, "freq", None)
|
||||
if freq is None:
|
||||
freq = getattr(series.index, "inferred_freq", None)
|
||||
freq = to_offset(freq, is_period=True)
|
||||
|
||||
ax_freq = _get_ax_freq(ax)
|
||||
|
||||
# use axes freq if no data freq
|
||||
if freq is None:
|
||||
freq = ax_freq
|
||||
|
||||
# get the period frequency
|
||||
freq = _get_period_alias(freq)
|
||||
return freq, ax_freq
|
||||
|
||||
|
||||
def use_dynamic_x(ax: Axes, data: DataFrame | Series) -> bool:
|
||||
freq = _get_index_freq(data.index)
|
||||
ax_freq = _get_ax_freq(ax)
|
||||
|
||||
if freq is None: # convert irregular if axes has freq info
|
||||
freq = ax_freq
|
||||
# do not use tsplot if irregular was plotted first
|
||||
elif (ax_freq is None) and (len(ax.get_lines()) > 0):
|
||||
return False
|
||||
|
||||
if freq is None:
|
||||
return False
|
||||
|
||||
freq_str = _get_period_alias(freq)
|
||||
|
||||
if freq_str is None:
|
||||
return False
|
||||
|
||||
# FIXME: hack this for 0.10.1, creating more technical debt...sigh
|
||||
if isinstance(data.index, ABCDatetimeIndex):
|
||||
# error: "BaseOffset" has no attribute "_period_dtype_code"
|
||||
freq_str = OFFSET_TO_PERIOD_FREQSTR.get(freq_str, freq_str)
|
||||
base = to_offset(
|
||||
freq_str, is_period=True
|
||||
)._period_dtype_code # type: ignore[attr-defined]
|
||||
x = data.index
|
||||
if base <= FreqGroup.FR_DAY.value:
|
||||
return x[:1].is_normalized
|
||||
period = Period(x[0], freq_str)
|
||||
assert isinstance(period, Period)
|
||||
return period.to_timestamp().tz_localize(x.tz) == x[0]
|
||||
return True
|
||||
|
||||
|
||||
def _get_index_freq(index: Index) -> BaseOffset | None:
|
||||
freq = getattr(index, "freq", None)
|
||||
if freq is None:
|
||||
freq = getattr(index, "inferred_freq", None)
|
||||
if freq == "B":
|
||||
# error: "Index" has no attribute "dayofweek"
|
||||
weekdays = np.unique(index.dayofweek) # type: ignore[attr-defined]
|
||||
if (5 in weekdays) or (6 in weekdays):
|
||||
freq = None
|
||||
|
||||
freq = to_offset(freq)
|
||||
return freq
|
||||
|
||||
|
||||
def maybe_convert_index(ax: Axes, data: NDFrameT) -> NDFrameT:
|
||||
# tsplot converts automatically, but don't want to convert index
|
||||
# over and over for DataFrames
|
||||
if isinstance(data.index, (ABCDatetimeIndex, ABCPeriodIndex)):
|
||||
freq: str | BaseOffset | None = data.index.freq
|
||||
|
||||
if freq is None:
|
||||
# We only get here for DatetimeIndex
|
||||
data.index = cast("DatetimeIndex", data.index)
|
||||
freq = data.index.inferred_freq
|
||||
freq = to_offset(freq)
|
||||
|
||||
if freq is None:
|
||||
freq = _get_ax_freq(ax)
|
||||
|
||||
if freq is None:
|
||||
raise ValueError("Could not get frequency alias for plotting")
|
||||
|
||||
freq_str = _get_period_alias(freq)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
# suppress Period[B] deprecation warning
|
||||
# TODO: need to find an alternative to this before the deprecation
|
||||
# is enforced!
|
||||
warnings.filterwarnings(
|
||||
"ignore",
|
||||
r"PeriodDtype\[B\] is deprecated",
|
||||
category=FutureWarning,
|
||||
)
|
||||
|
||||
if isinstance(data.index, ABCDatetimeIndex):
|
||||
data = data.tz_localize(None).to_period(freq=freq_str)
|
||||
elif isinstance(data.index, ABCPeriodIndex):
|
||||
data.index = data.index.asfreq(freq=freq_str)
|
||||
return data
|
||||
|
||||
|
||||
# Patch methods for subplot.
|
||||
|
||||
|
||||
def _format_coord(freq, t, y) -> str:
|
||||
time_period = Period(ordinal=int(t), freq=freq)
|
||||
return f"t = {time_period} y = {y:8f}"
|
||||
|
||||
|
||||
def format_dateaxis(
|
||||
subplot, freq: BaseOffset, index: DatetimeIndex | PeriodIndex
|
||||
) -> None:
|
||||
"""
|
||||
Pretty-formats the date axis (x-axis).
|
||||
|
||||
Major and minor ticks are automatically set for the frequency of the
|
||||
current underlying series. As the dynamic mode is activated by
|
||||
default, changing the limits of the x axis will intelligently change
|
||||
the positions of the ticks.
|
||||
"""
|
||||
from matplotlib import pylab
|
||||
|
||||
# handle index specific formatting
|
||||
# Note: DatetimeIndex does not use this
|
||||
# interface. DatetimeIndex uses matplotlib.date directly
|
||||
if isinstance(index, ABCPeriodIndex):
|
||||
majlocator = TimeSeries_DateLocator(
|
||||
freq, dynamic_mode=True, minor_locator=False, plot_obj=subplot
|
||||
)
|
||||
minlocator = TimeSeries_DateLocator(
|
||||
freq, dynamic_mode=True, minor_locator=True, plot_obj=subplot
|
||||
)
|
||||
subplot.xaxis.set_major_locator(majlocator)
|
||||
subplot.xaxis.set_minor_locator(minlocator)
|
||||
|
||||
majformatter = TimeSeries_DateFormatter(
|
||||
freq, dynamic_mode=True, minor_locator=False, plot_obj=subplot
|
||||
)
|
||||
minformatter = TimeSeries_DateFormatter(
|
||||
freq, dynamic_mode=True, minor_locator=True, plot_obj=subplot
|
||||
)
|
||||
subplot.xaxis.set_major_formatter(majformatter)
|
||||
subplot.xaxis.set_minor_formatter(minformatter)
|
||||
|
||||
# x and y coord info
|
||||
subplot.format_coord = functools.partial(_format_coord, freq)
|
||||
|
||||
elif isinstance(index, ABCTimedeltaIndex):
|
||||
subplot.xaxis.set_major_formatter(TimeSeries_TimedeltaFormatter())
|
||||
else:
|
||||
raise TypeError("index type not supported")
|
||||
|
||||
pylab.draw_if_interactive()
|
@ -0,0 +1,492 @@
|
||||
# being a bit too dynamic
|
||||
from __future__ import annotations
|
||||
|
||||
from math import ceil
|
||||
from typing import TYPE_CHECKING
|
||||
import warnings
|
||||
|
||||
from matplotlib import ticker
|
||||
import matplotlib.table
|
||||
import numpy as np
|
||||
|
||||
from pandas.util._exceptions import find_stack_level
|
||||
|
||||
from pandas.core.dtypes.common import is_list_like
|
||||
from pandas.core.dtypes.generic import (
|
||||
ABCDataFrame,
|
||||
ABCIndex,
|
||||
ABCSeries,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import (
|
||||
Iterable,
|
||||
Sequence,
|
||||
)
|
||||
|
||||
from matplotlib.axes import Axes
|
||||
from matplotlib.axis import Axis
|
||||
from matplotlib.figure import Figure
|
||||
from matplotlib.lines import Line2D
|
||||
from matplotlib.table import Table
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Series,
|
||||
)
|
||||
|
||||
|
||||
def do_adjust_figure(fig: Figure) -> bool:
|
||||
"""Whether fig has constrained_layout enabled."""
|
||||
if not hasattr(fig, "get_constrained_layout"):
|
||||
return False
|
||||
return not fig.get_constrained_layout()
|
||||
|
||||
|
||||
def maybe_adjust_figure(fig: Figure, *args, **kwargs) -> None:
|
||||
"""Call fig.subplots_adjust unless fig has constrained_layout enabled."""
|
||||
if do_adjust_figure(fig):
|
||||
fig.subplots_adjust(*args, **kwargs)
|
||||
|
||||
|
||||
def format_date_labels(ax: Axes, rot) -> None:
|
||||
# mini version of autofmt_xdate
|
||||
for label in ax.get_xticklabels():
|
||||
label.set_horizontalalignment("right")
|
||||
label.set_rotation(rot)
|
||||
fig = ax.get_figure()
|
||||
if fig is not None:
|
||||
# should always be a Figure but can technically be None
|
||||
maybe_adjust_figure(fig, bottom=0.2)
|
||||
|
||||
|
||||
def table(
|
||||
ax, data: DataFrame | Series, rowLabels=None, colLabels=None, **kwargs
|
||||
) -> Table:
|
||||
if isinstance(data, ABCSeries):
|
||||
data = data.to_frame()
|
||||
elif isinstance(data, ABCDataFrame):
|
||||
pass
|
||||
else:
|
||||
raise ValueError("Input data must be DataFrame or Series")
|
||||
|
||||
if rowLabels is None:
|
||||
rowLabels = data.index
|
||||
|
||||
if colLabels is None:
|
||||
colLabels = data.columns
|
||||
|
||||
cellText = data.values
|
||||
|
||||
# error: Argument "cellText" to "table" has incompatible type "ndarray[Any,
|
||||
# Any]"; expected "Sequence[Sequence[str]] | None"
|
||||
return matplotlib.table.table(
|
||||
ax,
|
||||
cellText=cellText, # type: ignore[arg-type]
|
||||
rowLabels=rowLabels,
|
||||
colLabels=colLabels,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def _get_layout(
|
||||
nplots: int,
|
||||
layout: tuple[int, int] | None = None,
|
||||
layout_type: str = "box",
|
||||
) -> tuple[int, int]:
|
||||
if layout is not None:
|
||||
if not isinstance(layout, (tuple, list)) or len(layout) != 2:
|
||||
raise ValueError("Layout must be a tuple of (rows, columns)")
|
||||
|
||||
nrows, ncols = layout
|
||||
|
||||
if nrows == -1 and ncols > 0:
|
||||
layout = nrows, ncols = (ceil(nplots / ncols), ncols)
|
||||
elif ncols == -1 and nrows > 0:
|
||||
layout = nrows, ncols = (nrows, ceil(nplots / nrows))
|
||||
elif ncols <= 0 and nrows <= 0:
|
||||
msg = "At least one dimension of layout must be positive"
|
||||
raise ValueError(msg)
|
||||
|
||||
if nrows * ncols < nplots:
|
||||
raise ValueError(
|
||||
f"Layout of {nrows}x{ncols} must be larger than required size {nplots}"
|
||||
)
|
||||
|
||||
return layout
|
||||
|
||||
if layout_type == "single":
|
||||
return (1, 1)
|
||||
elif layout_type == "horizontal":
|
||||
return (1, nplots)
|
||||
elif layout_type == "vertical":
|
||||
return (nplots, 1)
|
||||
|
||||
layouts = {1: (1, 1), 2: (1, 2), 3: (2, 2), 4: (2, 2)}
|
||||
try:
|
||||
return layouts[nplots]
|
||||
except KeyError:
|
||||
k = 1
|
||||
while k**2 < nplots:
|
||||
k += 1
|
||||
|
||||
if (k - 1) * k >= nplots:
|
||||
return k, (k - 1)
|
||||
else:
|
||||
return k, k
|
||||
|
||||
|
||||
# copied from matplotlib/pyplot.py and modified for pandas.plotting
|
||||
|
||||
|
||||
def create_subplots(
|
||||
naxes: int,
|
||||
sharex: bool = False,
|
||||
sharey: bool = False,
|
||||
squeeze: bool = True,
|
||||
subplot_kw=None,
|
||||
ax=None,
|
||||
layout=None,
|
||||
layout_type: str = "box",
|
||||
**fig_kw,
|
||||
):
|
||||
"""
|
||||
Create a figure with a set of subplots already made.
|
||||
|
||||
This utility wrapper makes it convenient to create common layouts of
|
||||
subplots, including the enclosing figure object, in a single call.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
naxes : int
|
||||
Number of required axes. Exceeded axes are set invisible. Default is
|
||||
nrows * ncols.
|
||||
|
||||
sharex : bool
|
||||
If True, the X axis will be shared amongst all subplots.
|
||||
|
||||
sharey : bool
|
||||
If True, the Y axis will be shared amongst all subplots.
|
||||
|
||||
squeeze : bool
|
||||
|
||||
If True, extra dimensions are squeezed out from the returned axis object:
|
||||
- if only one subplot is constructed (nrows=ncols=1), the resulting
|
||||
single Axis object is returned as a scalar.
|
||||
- for Nx1 or 1xN subplots, the returned object is a 1-d numpy object
|
||||
array of Axis objects are returned as numpy 1-d arrays.
|
||||
- for NxM subplots with N>1 and M>1 are returned as a 2d array.
|
||||
|
||||
If False, no squeezing is done: the returned axis object is always
|
||||
a 2-d array containing Axis instances, even if it ends up being 1x1.
|
||||
|
||||
subplot_kw : dict
|
||||
Dict with keywords passed to the add_subplot() call used to create each
|
||||
subplots.
|
||||
|
||||
ax : Matplotlib axis object, optional
|
||||
|
||||
layout : tuple
|
||||
Number of rows and columns of the subplot grid.
|
||||
If not specified, calculated from naxes and layout_type
|
||||
|
||||
layout_type : {'box', 'horizontal', 'vertical'}, default 'box'
|
||||
Specify how to layout the subplot grid.
|
||||
|
||||
fig_kw : Other keyword arguments to be passed to the figure() call.
|
||||
Note that all keywords not recognized above will be
|
||||
automatically included here.
|
||||
|
||||
Returns
|
||||
-------
|
||||
fig, ax : tuple
|
||||
- fig is the Matplotlib Figure object
|
||||
- ax can be either a single axis object or an array of axis objects if
|
||||
more than one subplot was created. The dimensions of the resulting array
|
||||
can be controlled with the squeeze keyword, see above.
|
||||
|
||||
Examples
|
||||
--------
|
||||
x = np.linspace(0, 2*np.pi, 400)
|
||||
y = np.sin(x**2)
|
||||
|
||||
# Just a figure and one subplot
|
||||
f, ax = plt.subplots()
|
||||
ax.plot(x, y)
|
||||
ax.set_title('Simple plot')
|
||||
|
||||
# Two subplots, unpack the output array immediately
|
||||
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
|
||||
ax1.plot(x, y)
|
||||
ax1.set_title('Sharing Y axis')
|
||||
ax2.scatter(x, y)
|
||||
|
||||
# Four polar axes
|
||||
plt.subplots(2, 2, subplot_kw=dict(polar=True))
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
if subplot_kw is None:
|
||||
subplot_kw = {}
|
||||
|
||||
if ax is None:
|
||||
fig = plt.figure(**fig_kw)
|
||||
else:
|
||||
if is_list_like(ax):
|
||||
if squeeze:
|
||||
ax = flatten_axes(ax)
|
||||
if layout is not None:
|
||||
warnings.warn(
|
||||
"When passing multiple axes, layout keyword is ignored.",
|
||||
UserWarning,
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
if sharex or sharey:
|
||||
warnings.warn(
|
||||
"When passing multiple axes, sharex and sharey "
|
||||
"are ignored. These settings must be specified when creating axes.",
|
||||
UserWarning,
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
if ax.size == naxes:
|
||||
fig = ax.flat[0].get_figure()
|
||||
return fig, ax
|
||||
else:
|
||||
raise ValueError(
|
||||
f"The number of passed axes must be {naxes}, the "
|
||||
"same as the output plot"
|
||||
)
|
||||
|
||||
fig = ax.get_figure()
|
||||
# if ax is passed and a number of subplots is 1, return ax as it is
|
||||
if naxes == 1:
|
||||
if squeeze:
|
||||
return fig, ax
|
||||
else:
|
||||
return fig, flatten_axes(ax)
|
||||
else:
|
||||
warnings.warn(
|
||||
"To output multiple subplots, the figure containing "
|
||||
"the passed axes is being cleared.",
|
||||
UserWarning,
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
fig.clear()
|
||||
|
||||
nrows, ncols = _get_layout(naxes, layout=layout, layout_type=layout_type)
|
||||
nplots = nrows * ncols
|
||||
|
||||
# Create empty object array to hold all axes. It's easiest to make it 1-d
|
||||
# so we can just append subplots upon creation, and then
|
||||
axarr = np.empty(nplots, dtype=object)
|
||||
|
||||
# Create first subplot separately, so we can share it if requested
|
||||
ax0 = fig.add_subplot(nrows, ncols, 1, **subplot_kw)
|
||||
|
||||
if sharex:
|
||||
subplot_kw["sharex"] = ax0
|
||||
if sharey:
|
||||
subplot_kw["sharey"] = ax0
|
||||
axarr[0] = ax0
|
||||
|
||||
# Note off-by-one counting because add_subplot uses the MATLAB 1-based
|
||||
# convention.
|
||||
for i in range(1, nplots):
|
||||
kwds = subplot_kw.copy()
|
||||
# Set sharex and sharey to None for blank/dummy axes, these can
|
||||
# interfere with proper axis limits on the visible axes if
|
||||
# they share axes e.g. issue #7528
|
||||
if i >= naxes:
|
||||
kwds["sharex"] = None
|
||||
kwds["sharey"] = None
|
||||
ax = fig.add_subplot(nrows, ncols, i + 1, **kwds)
|
||||
axarr[i] = ax
|
||||
|
||||
if naxes != nplots:
|
||||
for ax in axarr[naxes:]:
|
||||
ax.set_visible(False)
|
||||
|
||||
handle_shared_axes(axarr, nplots, naxes, nrows, ncols, sharex, sharey)
|
||||
|
||||
if squeeze:
|
||||
# Reshape the array to have the final desired dimension (nrow,ncol),
|
||||
# though discarding unneeded dimensions that equal 1. If we only have
|
||||
# one subplot, just return it instead of a 1-element array.
|
||||
if nplots == 1:
|
||||
axes = axarr[0]
|
||||
else:
|
||||
axes = axarr.reshape(nrows, ncols).squeeze()
|
||||
else:
|
||||
# returned axis array will be always 2-d, even if nrows=ncols=1
|
||||
axes = axarr.reshape(nrows, ncols)
|
||||
|
||||
return fig, axes
|
||||
|
||||
|
||||
def _remove_labels_from_axis(axis: Axis) -> None:
|
||||
for t in axis.get_majorticklabels():
|
||||
t.set_visible(False)
|
||||
|
||||
# set_visible will not be effective if
|
||||
# minor axis has NullLocator and NullFormatter (default)
|
||||
if isinstance(axis.get_minor_locator(), ticker.NullLocator):
|
||||
axis.set_minor_locator(ticker.AutoLocator())
|
||||
if isinstance(axis.get_minor_formatter(), ticker.NullFormatter):
|
||||
axis.set_minor_formatter(ticker.FormatStrFormatter(""))
|
||||
for t in axis.get_minorticklabels():
|
||||
t.set_visible(False)
|
||||
|
||||
axis.get_label().set_visible(False)
|
||||
|
||||
|
||||
def _has_externally_shared_axis(ax1: Axes, compare_axis: str) -> bool:
|
||||
"""
|
||||
Return whether an axis is externally shared.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ax1 : matplotlib.axes.Axes
|
||||
Axis to query.
|
||||
compare_axis : str
|
||||
`"x"` or `"y"` according to whether the X-axis or Y-axis is being
|
||||
compared.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
`True` if the axis is externally shared. Otherwise `False`.
|
||||
|
||||
Notes
|
||||
-----
|
||||
If two axes with different positions are sharing an axis, they can be
|
||||
referred to as *externally* sharing the common axis.
|
||||
|
||||
If two axes sharing an axis also have the same position, they can be
|
||||
referred to as *internally* sharing the common axis (a.k.a twinning).
|
||||
|
||||
_handle_shared_axes() is only interested in axes externally sharing an
|
||||
axis, regardless of whether either of the axes is also internally sharing
|
||||
with a third axis.
|
||||
"""
|
||||
if compare_axis == "x":
|
||||
axes = ax1.get_shared_x_axes()
|
||||
elif compare_axis == "y":
|
||||
axes = ax1.get_shared_y_axes()
|
||||
else:
|
||||
raise ValueError(
|
||||
"_has_externally_shared_axis() needs 'x' or 'y' as a second parameter"
|
||||
)
|
||||
|
||||
axes_siblings = axes.get_siblings(ax1)
|
||||
|
||||
# Retain ax1 and any of its siblings which aren't in the same position as it
|
||||
ax1_points = ax1.get_position().get_points()
|
||||
|
||||
for ax2 in axes_siblings:
|
||||
if not np.array_equal(ax1_points, ax2.get_position().get_points()):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def handle_shared_axes(
|
||||
axarr: Iterable[Axes],
|
||||
nplots: int,
|
||||
naxes: int,
|
||||
nrows: int,
|
||||
ncols: int,
|
||||
sharex: bool,
|
||||
sharey: bool,
|
||||
) -> None:
|
||||
if nplots > 1:
|
||||
row_num = lambda x: x.get_subplotspec().rowspan.start
|
||||
col_num = lambda x: x.get_subplotspec().colspan.start
|
||||
|
||||
is_first_col = lambda x: x.get_subplotspec().is_first_col()
|
||||
|
||||
if nrows > 1:
|
||||
try:
|
||||
# first find out the ax layout,
|
||||
# so that we can correctly handle 'gaps"
|
||||
layout = np.zeros((nrows + 1, ncols + 1), dtype=np.bool_)
|
||||
for ax in axarr:
|
||||
layout[row_num(ax), col_num(ax)] = ax.get_visible()
|
||||
|
||||
for ax in axarr:
|
||||
# only the last row of subplots should get x labels -> all
|
||||
# other off layout handles the case that the subplot is
|
||||
# the last in the column, because below is no subplot/gap.
|
||||
if not layout[row_num(ax) + 1, col_num(ax)]:
|
||||
continue
|
||||
if sharex or _has_externally_shared_axis(ax, "x"):
|
||||
_remove_labels_from_axis(ax.xaxis)
|
||||
|
||||
except IndexError:
|
||||
# if gridspec is used, ax.rowNum and ax.colNum may different
|
||||
# from layout shape. in this case, use last_row logic
|
||||
is_last_row = lambda x: x.get_subplotspec().is_last_row()
|
||||
for ax in axarr:
|
||||
if is_last_row(ax):
|
||||
continue
|
||||
if sharex or _has_externally_shared_axis(ax, "x"):
|
||||
_remove_labels_from_axis(ax.xaxis)
|
||||
|
||||
if ncols > 1:
|
||||
for ax in axarr:
|
||||
# only the first column should get y labels -> set all other to
|
||||
# off as we only have labels in the first column and we always
|
||||
# have a subplot there, we can skip the layout test
|
||||
if is_first_col(ax):
|
||||
continue
|
||||
if sharey or _has_externally_shared_axis(ax, "y"):
|
||||
_remove_labels_from_axis(ax.yaxis)
|
||||
|
||||
|
||||
def flatten_axes(axes: Axes | Sequence[Axes]) -> np.ndarray:
|
||||
if not is_list_like(axes):
|
||||
return np.array([axes])
|
||||
elif isinstance(axes, (np.ndarray, ABCIndex)):
|
||||
return np.asarray(axes).ravel()
|
||||
return np.array(axes)
|
||||
|
||||
|
||||
def set_ticks_props(
|
||||
axes: Axes | Sequence[Axes],
|
||||
xlabelsize: int | None = None,
|
||||
xrot=None,
|
||||
ylabelsize: int | None = None,
|
||||
yrot=None,
|
||||
):
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
for ax in flatten_axes(axes):
|
||||
if xlabelsize is not None:
|
||||
plt.setp(ax.get_xticklabels(), fontsize=xlabelsize)
|
||||
if xrot is not None:
|
||||
plt.setp(ax.get_xticklabels(), rotation=xrot)
|
||||
if ylabelsize is not None:
|
||||
plt.setp(ax.get_yticklabels(), fontsize=ylabelsize)
|
||||
if yrot is not None:
|
||||
plt.setp(ax.get_yticklabels(), rotation=yrot)
|
||||
return axes
|
||||
|
||||
|
||||
def get_all_lines(ax: Axes) -> list[Line2D]:
|
||||
lines = ax.get_lines()
|
||||
|
||||
if hasattr(ax, "right_ax"):
|
||||
lines += ax.right_ax.get_lines()
|
||||
|
||||
if hasattr(ax, "left_ax"):
|
||||
lines += ax.left_ax.get_lines()
|
||||
|
||||
return lines
|
||||
|
||||
|
||||
def get_xlim(lines: Iterable[Line2D]) -> tuple[float, float]:
|
||||
left, right = np.inf, -np.inf
|
||||
for line in lines:
|
||||
x = line.get_xdata(orig=False)
|
||||
left = min(np.nanmin(x), left)
|
||||
right = max(np.nanmax(x), right)
|
||||
return left, right
|
688
venv/lib/python3.12/site-packages/pandas/plotting/_misc.py
Normal file
688
venv/lib/python3.12/site-packages/pandas/plotting/_misc.py
Normal file
@ -0,0 +1,688 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from contextlib import contextmanager
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
)
|
||||
|
||||
from pandas.plotting._core import _get_plot_backend
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import (
|
||||
Generator,
|
||||
Mapping,
|
||||
)
|
||||
|
||||
from matplotlib.axes import Axes
|
||||
from matplotlib.colors import Colormap
|
||||
from matplotlib.figure import Figure
|
||||
from matplotlib.table import Table
|
||||
import numpy as np
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Series,
|
||||
)
|
||||
|
||||
|
||||
def table(ax: Axes, data: DataFrame | Series, **kwargs) -> Table:
|
||||
"""
|
||||
Helper function to convert DataFrame and Series to matplotlib.table.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ax : Matplotlib axes object
|
||||
data : DataFrame or Series
|
||||
Data for table contents.
|
||||
**kwargs
|
||||
Keyword arguments to be passed to matplotlib.table.table.
|
||||
If `rowLabels` or `colLabels` is not specified, data index or column
|
||||
name will be used.
|
||||
|
||||
Returns
|
||||
-------
|
||||
matplotlib table object
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> import matplotlib.pyplot as plt
|
||||
>>> df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
|
||||
>>> fix, ax = plt.subplots()
|
||||
>>> ax.axis('off')
|
||||
(0.0, 1.0, 0.0, 1.0)
|
||||
>>> table = pd.plotting.table(ax, df, loc='center',
|
||||
... cellLoc='center', colWidths=list([.2, .2]))
|
||||
"""
|
||||
plot_backend = _get_plot_backend("matplotlib")
|
||||
return plot_backend.table(
|
||||
ax=ax, data=data, rowLabels=None, colLabels=None, **kwargs
|
||||
)
|
||||
|
||||
|
||||
def register() -> None:
|
||||
"""
|
||||
Register pandas formatters and converters with matplotlib.
|
||||
|
||||
This function modifies the global ``matplotlib.units.registry``
|
||||
dictionary. pandas adds custom converters for
|
||||
|
||||
* pd.Timestamp
|
||||
* pd.Period
|
||||
* np.datetime64
|
||||
* datetime.datetime
|
||||
* datetime.date
|
||||
* datetime.time
|
||||
|
||||
See Also
|
||||
--------
|
||||
deregister_matplotlib_converters : Remove pandas formatters and converters.
|
||||
|
||||
Examples
|
||||
--------
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
The following line is done automatically by pandas so
|
||||
the plot can be rendered:
|
||||
|
||||
>>> pd.plotting.register_matplotlib_converters()
|
||||
|
||||
>>> df = pd.DataFrame({'ts': pd.period_range('2020', periods=2, freq='M'),
|
||||
... 'y': [1, 2]
|
||||
... })
|
||||
>>> plot = df.plot.line(x='ts', y='y')
|
||||
|
||||
Unsetting the register manually an error will be raised:
|
||||
|
||||
>>> pd.set_option("plotting.matplotlib.register_converters",
|
||||
... False) # doctest: +SKIP
|
||||
>>> df.plot.line(x='ts', y='y') # doctest: +SKIP
|
||||
Traceback (most recent call last):
|
||||
TypeError: float() argument must be a string or a real number, not 'Period'
|
||||
"""
|
||||
plot_backend = _get_plot_backend("matplotlib")
|
||||
plot_backend.register()
|
||||
|
||||
|
||||
def deregister() -> None:
|
||||
"""
|
||||
Remove pandas formatters and converters.
|
||||
|
||||
Removes the custom converters added by :func:`register`. This
|
||||
attempts to set the state of the registry back to the state before
|
||||
pandas registered its own units. Converters for pandas' own types like
|
||||
Timestamp and Period are removed completely. Converters for types
|
||||
pandas overwrites, like ``datetime.datetime``, are restored to their
|
||||
original value.
|
||||
|
||||
See Also
|
||||
--------
|
||||
register_matplotlib_converters : Register pandas formatters and converters
|
||||
with matplotlib.
|
||||
|
||||
Examples
|
||||
--------
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
The following line is done automatically by pandas so
|
||||
the plot can be rendered:
|
||||
|
||||
>>> pd.plotting.register_matplotlib_converters()
|
||||
|
||||
>>> df = pd.DataFrame({'ts': pd.period_range('2020', periods=2, freq='M'),
|
||||
... 'y': [1, 2]
|
||||
... })
|
||||
>>> plot = df.plot.line(x='ts', y='y')
|
||||
|
||||
Unsetting the register manually an error will be raised:
|
||||
|
||||
>>> pd.set_option("plotting.matplotlib.register_converters",
|
||||
... False) # doctest: +SKIP
|
||||
>>> df.plot.line(x='ts', y='y') # doctest: +SKIP
|
||||
Traceback (most recent call last):
|
||||
TypeError: float() argument must be a string or a real number, not 'Period'
|
||||
"""
|
||||
plot_backend = _get_plot_backend("matplotlib")
|
||||
plot_backend.deregister()
|
||||
|
||||
|
||||
def scatter_matrix(
|
||||
frame: DataFrame,
|
||||
alpha: float = 0.5,
|
||||
figsize: tuple[float, float] | None = None,
|
||||
ax: Axes | None = None,
|
||||
grid: bool = False,
|
||||
diagonal: str = "hist",
|
||||
marker: str = ".",
|
||||
density_kwds: Mapping[str, Any] | None = None,
|
||||
hist_kwds: Mapping[str, Any] | None = None,
|
||||
range_padding: float = 0.05,
|
||||
**kwargs,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Draw a matrix of scatter plots.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frame : DataFrame
|
||||
alpha : float, optional
|
||||
Amount of transparency applied.
|
||||
figsize : (float,float), optional
|
||||
A tuple (width, height) in inches.
|
||||
ax : Matplotlib axis object, optional
|
||||
grid : bool, optional
|
||||
Setting this to True will show the grid.
|
||||
diagonal : {'hist', 'kde'}
|
||||
Pick between 'kde' and 'hist' for either Kernel Density Estimation or
|
||||
Histogram plot in the diagonal.
|
||||
marker : str, optional
|
||||
Matplotlib marker type, default '.'.
|
||||
density_kwds : keywords
|
||||
Keyword arguments to be passed to kernel density estimate plot.
|
||||
hist_kwds : keywords
|
||||
Keyword arguments to be passed to hist function.
|
||||
range_padding : float, default 0.05
|
||||
Relative extension of axis range in x and y with respect to
|
||||
(x_max - x_min) or (y_max - y_min).
|
||||
**kwargs
|
||||
Keyword arguments to be passed to scatter function.
|
||||
|
||||
Returns
|
||||
-------
|
||||
numpy.ndarray
|
||||
A matrix of scatter plots.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> df = pd.DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D'])
|
||||
>>> pd.plotting.scatter_matrix(df, alpha=0.2)
|
||||
array([[<Axes: xlabel='A', ylabel='A'>, <Axes: xlabel='B', ylabel='A'>,
|
||||
<Axes: xlabel='C', ylabel='A'>, <Axes: xlabel='D', ylabel='A'>],
|
||||
[<Axes: xlabel='A', ylabel='B'>, <Axes: xlabel='B', ylabel='B'>,
|
||||
<Axes: xlabel='C', ylabel='B'>, <Axes: xlabel='D', ylabel='B'>],
|
||||
[<Axes: xlabel='A', ylabel='C'>, <Axes: xlabel='B', ylabel='C'>,
|
||||
<Axes: xlabel='C', ylabel='C'>, <Axes: xlabel='D', ylabel='C'>],
|
||||
[<Axes: xlabel='A', ylabel='D'>, <Axes: xlabel='B', ylabel='D'>,
|
||||
<Axes: xlabel='C', ylabel='D'>, <Axes: xlabel='D', ylabel='D'>]],
|
||||
dtype=object)
|
||||
"""
|
||||
plot_backend = _get_plot_backend("matplotlib")
|
||||
return plot_backend.scatter_matrix(
|
||||
frame=frame,
|
||||
alpha=alpha,
|
||||
figsize=figsize,
|
||||
ax=ax,
|
||||
grid=grid,
|
||||
diagonal=diagonal,
|
||||
marker=marker,
|
||||
density_kwds=density_kwds,
|
||||
hist_kwds=hist_kwds,
|
||||
range_padding=range_padding,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def radviz(
|
||||
frame: DataFrame,
|
||||
class_column: str,
|
||||
ax: Axes | None = None,
|
||||
color: list[str] | tuple[str, ...] | None = None,
|
||||
colormap: Colormap | str | None = None,
|
||||
**kwds,
|
||||
) -> Axes:
|
||||
"""
|
||||
Plot a multidimensional dataset in 2D.
|
||||
|
||||
Each Series in the DataFrame is represented as a evenly distributed
|
||||
slice on a circle. Each data point is rendered in the circle according to
|
||||
the value on each Series. Highly correlated `Series` in the `DataFrame`
|
||||
are placed closer on the unit circle.
|
||||
|
||||
RadViz allow to project a N-dimensional data set into a 2D space where the
|
||||
influence of each dimension can be interpreted as a balance between the
|
||||
influence of all dimensions.
|
||||
|
||||
More info available at the `original article
|
||||
<https://doi.org/10.1145/331770.331775>`_
|
||||
describing RadViz.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frame : `DataFrame`
|
||||
Object holding the data.
|
||||
class_column : str
|
||||
Column name containing the name of the data point category.
|
||||
ax : :class:`matplotlib.axes.Axes`, optional
|
||||
A plot instance to which to add the information.
|
||||
color : list[str] or tuple[str], optional
|
||||
Assign a color to each category. Example: ['blue', 'green'].
|
||||
colormap : str or :class:`matplotlib.colors.Colormap`, default None
|
||||
Colormap to select colors from. If string, load colormap with that
|
||||
name from matplotlib.
|
||||
**kwds
|
||||
Options to pass to matplotlib scatter plotting method.
|
||||
|
||||
Returns
|
||||
-------
|
||||
:class:`matplotlib.axes.Axes`
|
||||
|
||||
See Also
|
||||
--------
|
||||
pandas.plotting.andrews_curves : Plot clustering visualization.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> df = pd.DataFrame(
|
||||
... {
|
||||
... 'SepalLength': [6.5, 7.7, 5.1, 5.8, 7.6, 5.0, 5.4, 4.6, 6.7, 4.6],
|
||||
... 'SepalWidth': [3.0, 3.8, 3.8, 2.7, 3.0, 2.3, 3.0, 3.2, 3.3, 3.6],
|
||||
... 'PetalLength': [5.5, 6.7, 1.9, 5.1, 6.6, 3.3, 4.5, 1.4, 5.7, 1.0],
|
||||
... 'PetalWidth': [1.8, 2.2, 0.4, 1.9, 2.1, 1.0, 1.5, 0.2, 2.1, 0.2],
|
||||
... 'Category': [
|
||||
... 'virginica',
|
||||
... 'virginica',
|
||||
... 'setosa',
|
||||
... 'virginica',
|
||||
... 'virginica',
|
||||
... 'versicolor',
|
||||
... 'versicolor',
|
||||
... 'setosa',
|
||||
... 'virginica',
|
||||
... 'setosa'
|
||||
... ]
|
||||
... }
|
||||
... )
|
||||
>>> pd.plotting.radviz(df, 'Category') # doctest: +SKIP
|
||||
"""
|
||||
plot_backend = _get_plot_backend("matplotlib")
|
||||
return plot_backend.radviz(
|
||||
frame=frame,
|
||||
class_column=class_column,
|
||||
ax=ax,
|
||||
color=color,
|
||||
colormap=colormap,
|
||||
**kwds,
|
||||
)
|
||||
|
||||
|
||||
def andrews_curves(
|
||||
frame: DataFrame,
|
||||
class_column: str,
|
||||
ax: Axes | None = None,
|
||||
samples: int = 200,
|
||||
color: list[str] | tuple[str, ...] | None = None,
|
||||
colormap: Colormap | str | None = None,
|
||||
**kwargs,
|
||||
) -> Axes:
|
||||
"""
|
||||
Generate a matplotlib plot for visualizing clusters of multivariate data.
|
||||
|
||||
Andrews curves have the functional form:
|
||||
|
||||
.. math::
|
||||
f(t) = \\frac{x_1}{\\sqrt{2}} + x_2 \\sin(t) + x_3 \\cos(t) +
|
||||
x_4 \\sin(2t) + x_5 \\cos(2t) + \\cdots
|
||||
|
||||
Where :math:`x` coefficients correspond to the values of each dimension
|
||||
and :math:`t` is linearly spaced between :math:`-\\pi` and :math:`+\\pi`.
|
||||
Each row of frame then corresponds to a single curve.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frame : DataFrame
|
||||
Data to be plotted, preferably normalized to (0.0, 1.0).
|
||||
class_column : label
|
||||
Name of the column containing class names.
|
||||
ax : axes object, default None
|
||||
Axes to use.
|
||||
samples : int
|
||||
Number of points to plot in each curve.
|
||||
color : str, list[str] or tuple[str], optional
|
||||
Colors to use for the different classes. Colors can be strings
|
||||
or 3-element floating point RGB values.
|
||||
colormap : str or matplotlib colormap object, default None
|
||||
Colormap to select colors from. If a string, load colormap with that
|
||||
name from matplotlib.
|
||||
**kwargs
|
||||
Options to pass to matplotlib plotting method.
|
||||
|
||||
Returns
|
||||
-------
|
||||
:class:`matplotlib.axes.Axes`
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> df = pd.read_csv(
|
||||
... 'https://raw.githubusercontent.com/pandas-dev/'
|
||||
... 'pandas/main/pandas/tests/io/data/csv/iris.csv'
|
||||
... )
|
||||
>>> pd.plotting.andrews_curves(df, 'Name') # doctest: +SKIP
|
||||
"""
|
||||
plot_backend = _get_plot_backend("matplotlib")
|
||||
return plot_backend.andrews_curves(
|
||||
frame=frame,
|
||||
class_column=class_column,
|
||||
ax=ax,
|
||||
samples=samples,
|
||||
color=color,
|
||||
colormap=colormap,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def bootstrap_plot(
|
||||
series: Series,
|
||||
fig: Figure | None = None,
|
||||
size: int = 50,
|
||||
samples: int = 500,
|
||||
**kwds,
|
||||
) -> Figure:
|
||||
"""
|
||||
Bootstrap plot on mean, median and mid-range statistics.
|
||||
|
||||
The bootstrap plot is used to estimate the uncertainty of a statistic
|
||||
by relying on random sampling with replacement [1]_. This function will
|
||||
generate bootstrapping plots for mean, median and mid-range statistics
|
||||
for the given number of samples of the given size.
|
||||
|
||||
.. [1] "Bootstrapping (statistics)" in \
|
||||
https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29
|
||||
|
||||
Parameters
|
||||
----------
|
||||
series : pandas.Series
|
||||
Series from where to get the samplings for the bootstrapping.
|
||||
fig : matplotlib.figure.Figure, default None
|
||||
If given, it will use the `fig` reference for plotting instead of
|
||||
creating a new one with default parameters.
|
||||
size : int, default 50
|
||||
Number of data points to consider during each sampling. It must be
|
||||
less than or equal to the length of the `series`.
|
||||
samples : int, default 500
|
||||
Number of times the bootstrap procedure is performed.
|
||||
**kwds
|
||||
Options to pass to matplotlib plotting method.
|
||||
|
||||
Returns
|
||||
-------
|
||||
matplotlib.figure.Figure
|
||||
Matplotlib figure.
|
||||
|
||||
See Also
|
||||
--------
|
||||
pandas.DataFrame.plot : Basic plotting for DataFrame objects.
|
||||
pandas.Series.plot : Basic plotting for Series objects.
|
||||
|
||||
Examples
|
||||
--------
|
||||
This example draws a basic bootstrap plot for a Series.
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> s = pd.Series(np.random.uniform(size=100))
|
||||
>>> pd.plotting.bootstrap_plot(s) # doctest: +SKIP
|
||||
<Figure size 640x480 with 6 Axes>
|
||||
"""
|
||||
plot_backend = _get_plot_backend("matplotlib")
|
||||
return plot_backend.bootstrap_plot(
|
||||
series=series, fig=fig, size=size, samples=samples, **kwds
|
||||
)
|
||||
|
||||
|
||||
def parallel_coordinates(
|
||||
frame: DataFrame,
|
||||
class_column: str,
|
||||
cols: list[str] | None = None,
|
||||
ax: Axes | None = None,
|
||||
color: list[str] | tuple[str, ...] | None = None,
|
||||
use_columns: bool = False,
|
||||
xticks: list | tuple | None = None,
|
||||
colormap: Colormap | str | None = None,
|
||||
axvlines: bool = True,
|
||||
axvlines_kwds: Mapping[str, Any] | None = None,
|
||||
sort_labels: bool = False,
|
||||
**kwargs,
|
||||
) -> Axes:
|
||||
"""
|
||||
Parallel coordinates plotting.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frame : DataFrame
|
||||
class_column : str
|
||||
Column name containing class names.
|
||||
cols : list, optional
|
||||
A list of column names to use.
|
||||
ax : matplotlib.axis, optional
|
||||
Matplotlib axis object.
|
||||
color : list or tuple, optional
|
||||
Colors to use for the different classes.
|
||||
use_columns : bool, optional
|
||||
If true, columns will be used as xticks.
|
||||
xticks : list or tuple, optional
|
||||
A list of values to use for xticks.
|
||||
colormap : str or matplotlib colormap, default None
|
||||
Colormap to use for line colors.
|
||||
axvlines : bool, optional
|
||||
If true, vertical lines will be added at each xtick.
|
||||
axvlines_kwds : keywords, optional
|
||||
Options to be passed to axvline method for vertical lines.
|
||||
sort_labels : bool, default False
|
||||
Sort class_column labels, useful when assigning colors.
|
||||
**kwargs
|
||||
Options to pass to matplotlib plotting method.
|
||||
|
||||
Returns
|
||||
-------
|
||||
matplotlib.axes.Axes
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> df = pd.read_csv(
|
||||
... 'https://raw.githubusercontent.com/pandas-dev/'
|
||||
... 'pandas/main/pandas/tests/io/data/csv/iris.csv'
|
||||
... )
|
||||
>>> pd.plotting.parallel_coordinates(
|
||||
... df, 'Name', color=('#556270', '#4ECDC4', '#C7F464')
|
||||
... ) # doctest: +SKIP
|
||||
"""
|
||||
plot_backend = _get_plot_backend("matplotlib")
|
||||
return plot_backend.parallel_coordinates(
|
||||
frame=frame,
|
||||
class_column=class_column,
|
||||
cols=cols,
|
||||
ax=ax,
|
||||
color=color,
|
||||
use_columns=use_columns,
|
||||
xticks=xticks,
|
||||
colormap=colormap,
|
||||
axvlines=axvlines,
|
||||
axvlines_kwds=axvlines_kwds,
|
||||
sort_labels=sort_labels,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def lag_plot(series: Series, lag: int = 1, ax: Axes | None = None, **kwds) -> Axes:
|
||||
"""
|
||||
Lag plot for time series.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
series : Series
|
||||
The time series to visualize.
|
||||
lag : int, default 1
|
||||
Lag length of the scatter plot.
|
||||
ax : Matplotlib axis object, optional
|
||||
The matplotlib axis object to use.
|
||||
**kwds
|
||||
Matplotlib scatter method keyword arguments.
|
||||
|
||||
Returns
|
||||
-------
|
||||
matplotlib.axes.Axes
|
||||
|
||||
Examples
|
||||
--------
|
||||
Lag plots are most commonly used to look for patterns in time series data.
|
||||
|
||||
Given the following time series
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> np.random.seed(5)
|
||||
>>> x = np.cumsum(np.random.normal(loc=1, scale=5, size=50))
|
||||
>>> s = pd.Series(x)
|
||||
>>> s.plot() # doctest: +SKIP
|
||||
|
||||
A lag plot with ``lag=1`` returns
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> pd.plotting.lag_plot(s, lag=1)
|
||||
<Axes: xlabel='y(t)', ylabel='y(t + 1)'>
|
||||
"""
|
||||
plot_backend = _get_plot_backend("matplotlib")
|
||||
return plot_backend.lag_plot(series=series, lag=lag, ax=ax, **kwds)
|
||||
|
||||
|
||||
def autocorrelation_plot(series: Series, ax: Axes | None = None, **kwargs) -> Axes:
|
||||
"""
|
||||
Autocorrelation plot for time series.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
series : Series
|
||||
The time series to visualize.
|
||||
ax : Matplotlib axis object, optional
|
||||
The matplotlib axis object to use.
|
||||
**kwargs
|
||||
Options to pass to matplotlib plotting method.
|
||||
|
||||
Returns
|
||||
-------
|
||||
matplotlib.axes.Axes
|
||||
|
||||
Examples
|
||||
--------
|
||||
The horizontal lines in the plot correspond to 95% and 99% confidence bands.
|
||||
|
||||
The dashed line is 99% confidence band.
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000)
|
||||
>>> s = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing))
|
||||
>>> pd.plotting.autocorrelation_plot(s) # doctest: +SKIP
|
||||
"""
|
||||
plot_backend = _get_plot_backend("matplotlib")
|
||||
return plot_backend.autocorrelation_plot(series=series, ax=ax, **kwargs)
|
||||
|
||||
|
||||
class _Options(dict):
|
||||
"""
|
||||
Stores pandas plotting options.
|
||||
|
||||
Allows for parameter aliasing so you can just use parameter names that are
|
||||
the same as the plot function parameters, but is stored in a canonical
|
||||
format that makes it easy to breakdown into groups later.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
.. plot::
|
||||
:context: close-figs
|
||||
|
||||
>>> np.random.seed(42)
|
||||
>>> df = pd.DataFrame({'A': np.random.randn(10),
|
||||
... 'B': np.random.randn(10)},
|
||||
... index=pd.date_range("1/1/2000",
|
||||
... freq='4MS', periods=10))
|
||||
>>> with pd.plotting.plot_params.use("x_compat", True):
|
||||
... _ = df["A"].plot(color="r")
|
||||
... _ = df["B"].plot(color="g")
|
||||
"""
|
||||
|
||||
# alias so the names are same as plotting method parameter names
|
||||
_ALIASES = {"x_compat": "xaxis.compat"}
|
||||
_DEFAULT_KEYS = ["xaxis.compat"]
|
||||
|
||||
def __init__(self, deprecated: bool = False) -> None:
|
||||
self._deprecated = deprecated
|
||||
super().__setitem__("xaxis.compat", False)
|
||||
|
||||
def __getitem__(self, key):
|
||||
key = self._get_canonical_key(key)
|
||||
if key not in self:
|
||||
raise ValueError(f"{key} is not a valid pandas plotting option")
|
||||
return super().__getitem__(key)
|
||||
|
||||
def __setitem__(self, key, value) -> None:
|
||||
key = self._get_canonical_key(key)
|
||||
super().__setitem__(key, value)
|
||||
|
||||
def __delitem__(self, key) -> None:
|
||||
key = self._get_canonical_key(key)
|
||||
if key in self._DEFAULT_KEYS:
|
||||
raise ValueError(f"Cannot remove default parameter {key}")
|
||||
super().__delitem__(key)
|
||||
|
||||
def __contains__(self, key) -> bool:
|
||||
key = self._get_canonical_key(key)
|
||||
return super().__contains__(key)
|
||||
|
||||
def reset(self) -> None:
|
||||
"""
|
||||
Reset the option store to its initial state
|
||||
|
||||
Returns
|
||||
-------
|
||||
None
|
||||
"""
|
||||
# error: Cannot access "__init__" directly
|
||||
self.__init__() # type: ignore[misc]
|
||||
|
||||
def _get_canonical_key(self, key):
|
||||
return self._ALIASES.get(key, key)
|
||||
|
||||
@contextmanager
|
||||
def use(self, key, value) -> Generator[_Options, None, None]:
|
||||
"""
|
||||
Temporarily set a parameter value using the with statement.
|
||||
Aliasing allowed.
|
||||
"""
|
||||
old_value = self[key]
|
||||
try:
|
||||
self[key] = value
|
||||
yield self
|
||||
finally:
|
||||
self[key] = old_value
|
||||
|
||||
|
||||
plot_params = _Options()
|
Reference in New Issue
Block a user