forked from Alsan/Post_finder
venv
This commit is contained in:
13
venv/lib/python3.12/site-packages/pandas/io/__init__.py
Normal file
13
venv/lib/python3.12/site-packages/pandas/io/__init__.py
Normal file
@ -0,0 +1,13 @@
|
||||
# ruff: noqa: TCH004
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
if TYPE_CHECKING:
|
||||
# import modules that have public classes/functions
|
||||
from pandas.io import (
|
||||
formats,
|
||||
json,
|
||||
stata,
|
||||
)
|
||||
|
||||
# mark only those modules as public
|
||||
__all__ = ["formats", "json", "stata"]
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
34
venv/lib/python3.12/site-packages/pandas/io/_util.py
Normal file
34
venv/lib/python3.12/site-packages/pandas/io/_util.py
Normal file
@ -0,0 +1,34 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Callable
|
||||
|
||||
from pandas.compat._optional import import_optional_dependency
|
||||
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def _arrow_dtype_mapping() -> dict:
|
||||
pa = import_optional_dependency("pyarrow")
|
||||
return {
|
||||
pa.int8(): pd.Int8Dtype(),
|
||||
pa.int16(): pd.Int16Dtype(),
|
||||
pa.int32(): pd.Int32Dtype(),
|
||||
pa.int64(): pd.Int64Dtype(),
|
||||
pa.uint8(): pd.UInt8Dtype(),
|
||||
pa.uint16(): pd.UInt16Dtype(),
|
||||
pa.uint32(): pd.UInt32Dtype(),
|
||||
pa.uint64(): pd.UInt64Dtype(),
|
||||
pa.bool_(): pd.BooleanDtype(),
|
||||
pa.string(): pd.StringDtype(),
|
||||
pa.float32(): pd.Float32Dtype(),
|
||||
pa.float64(): pd.Float64Dtype(),
|
||||
}
|
||||
|
||||
|
||||
def arrow_string_types_mapper() -> Callable:
|
||||
pa = import_optional_dependency("pyarrow")
|
||||
|
||||
return {
|
||||
pa.string(): pd.StringDtype(storage="pyarrow_numpy"),
|
||||
pa.large_string(): pd.StringDtype(storage="pyarrow_numpy"),
|
||||
}.get
|
65
venv/lib/python3.12/site-packages/pandas/io/api.py
Normal file
65
venv/lib/python3.12/site-packages/pandas/io/api.py
Normal file
@ -0,0 +1,65 @@
|
||||
"""
|
||||
Data IO api
|
||||
"""
|
||||
|
||||
from pandas.io.clipboards import read_clipboard
|
||||
from pandas.io.excel import (
|
||||
ExcelFile,
|
||||
ExcelWriter,
|
||||
read_excel,
|
||||
)
|
||||
from pandas.io.feather_format import read_feather
|
||||
from pandas.io.gbq import read_gbq
|
||||
from pandas.io.html import read_html
|
||||
from pandas.io.json import read_json
|
||||
from pandas.io.orc import read_orc
|
||||
from pandas.io.parquet import read_parquet
|
||||
from pandas.io.parsers import (
|
||||
read_csv,
|
||||
read_fwf,
|
||||
read_table,
|
||||
)
|
||||
from pandas.io.pickle import (
|
||||
read_pickle,
|
||||
to_pickle,
|
||||
)
|
||||
from pandas.io.pytables import (
|
||||
HDFStore,
|
||||
read_hdf,
|
||||
)
|
||||
from pandas.io.sas import read_sas
|
||||
from pandas.io.spss import read_spss
|
||||
from pandas.io.sql import (
|
||||
read_sql,
|
||||
read_sql_query,
|
||||
read_sql_table,
|
||||
)
|
||||
from pandas.io.stata import read_stata
|
||||
from pandas.io.xml import read_xml
|
||||
|
||||
__all__ = [
|
||||
"ExcelFile",
|
||||
"ExcelWriter",
|
||||
"HDFStore",
|
||||
"read_clipboard",
|
||||
"read_csv",
|
||||
"read_excel",
|
||||
"read_feather",
|
||||
"read_fwf",
|
||||
"read_gbq",
|
||||
"read_hdf",
|
||||
"read_html",
|
||||
"read_json",
|
||||
"read_orc",
|
||||
"read_parquet",
|
||||
"read_pickle",
|
||||
"read_sas",
|
||||
"read_spss",
|
||||
"read_sql",
|
||||
"read_sql_query",
|
||||
"read_sql_table",
|
||||
"read_stata",
|
||||
"read_table",
|
||||
"read_xml",
|
||||
"to_pickle",
|
||||
]
|
@ -0,0 +1,747 @@
|
||||
"""
|
||||
Pyperclip
|
||||
|
||||
A cross-platform clipboard module for Python,
|
||||
with copy & paste functions for plain text.
|
||||
By Al Sweigart al@inventwithpython.com
|
||||
Licence at LICENSES/PYPERCLIP_LICENSE
|
||||
|
||||
Usage:
|
||||
import pyperclip
|
||||
pyperclip.copy('The text to be copied to the clipboard.')
|
||||
spam = pyperclip.paste()
|
||||
|
||||
if not pyperclip.is_available():
|
||||
print("Copy functionality unavailable!")
|
||||
|
||||
On Windows, no additional modules are needed.
|
||||
On Mac, the pyobjc module is used, falling back to the pbcopy and pbpaste cli
|
||||
commands. (These commands should come with OS X.).
|
||||
On Linux, install xclip, xsel, or wl-clipboard (for "wayland" sessions) via
|
||||
package manager.
|
||||
For example, in Debian:
|
||||
sudo apt-get install xclip
|
||||
sudo apt-get install xsel
|
||||
sudo apt-get install wl-clipboard
|
||||
|
||||
Otherwise on Linux, you will need the PyQt5 modules installed.
|
||||
|
||||
This module does not work with PyGObject yet.
|
||||
|
||||
Cygwin is currently not supported.
|
||||
|
||||
Security Note: This module runs programs with these names:
|
||||
- pbcopy
|
||||
- pbpaste
|
||||
- xclip
|
||||
- xsel
|
||||
- wl-copy/wl-paste
|
||||
- klipper
|
||||
- qdbus
|
||||
A malicious user could rename or add programs with these names, tricking
|
||||
Pyperclip into running them with whatever permissions the Python process has.
|
||||
|
||||
"""
|
||||
|
||||
__version__ = "1.8.2"
|
||||
|
||||
|
||||
import contextlib
|
||||
import ctypes
|
||||
from ctypes import (
|
||||
c_size_t,
|
||||
c_wchar,
|
||||
c_wchar_p,
|
||||
get_errno,
|
||||
sizeof,
|
||||
)
|
||||
import os
|
||||
import platform
|
||||
from shutil import which as _executable_exists
|
||||
import subprocess
|
||||
import time
|
||||
import warnings
|
||||
|
||||
from pandas.errors import (
|
||||
PyperclipException,
|
||||
PyperclipWindowsException,
|
||||
)
|
||||
from pandas.util._exceptions import find_stack_level
|
||||
|
||||
# `import PyQt4` sys.exit()s if DISPLAY is not in the environment.
|
||||
# Thus, we need to detect the presence of $DISPLAY manually
|
||||
# and not load PyQt4 if it is absent.
|
||||
HAS_DISPLAY = os.getenv("DISPLAY")
|
||||
|
||||
EXCEPT_MSG = """
|
||||
Pyperclip could not find a copy/paste mechanism for your system.
|
||||
For more information, please visit
|
||||
https://pyperclip.readthedocs.io/en/latest/index.html#not-implemented-error
|
||||
"""
|
||||
|
||||
ENCODING = "utf-8"
|
||||
|
||||
|
||||
class PyperclipTimeoutException(PyperclipException):
|
||||
pass
|
||||
|
||||
|
||||
def _stringifyText(text) -> str:
|
||||
acceptedTypes = (str, int, float, bool)
|
||||
if not isinstance(text, acceptedTypes):
|
||||
raise PyperclipException(
|
||||
f"only str, int, float, and bool values "
|
||||
f"can be copied to the clipboard, not {type(text).__name__}"
|
||||
)
|
||||
return str(text)
|
||||
|
||||
|
||||
def init_osx_pbcopy_clipboard():
|
||||
def copy_osx_pbcopy(text):
|
||||
text = _stringifyText(text) # Converts non-str values to str.
|
||||
with subprocess.Popen(
|
||||
["pbcopy", "w"], stdin=subprocess.PIPE, close_fds=True
|
||||
) as p:
|
||||
p.communicate(input=text.encode(ENCODING))
|
||||
|
||||
def paste_osx_pbcopy():
|
||||
with subprocess.Popen(
|
||||
["pbpaste", "r"], stdout=subprocess.PIPE, close_fds=True
|
||||
) as p:
|
||||
stdout = p.communicate()[0]
|
||||
return stdout.decode(ENCODING)
|
||||
|
||||
return copy_osx_pbcopy, paste_osx_pbcopy
|
||||
|
||||
|
||||
def init_osx_pyobjc_clipboard():
|
||||
def copy_osx_pyobjc(text):
|
||||
"""Copy string argument to clipboard"""
|
||||
text = _stringifyText(text) # Converts non-str values to str.
|
||||
newStr = Foundation.NSString.stringWithString_(text).nsstring()
|
||||
newData = newStr.dataUsingEncoding_(Foundation.NSUTF8StringEncoding)
|
||||
board = AppKit.NSPasteboard.generalPasteboard()
|
||||
board.declareTypes_owner_([AppKit.NSStringPboardType], None)
|
||||
board.setData_forType_(newData, AppKit.NSStringPboardType)
|
||||
|
||||
def paste_osx_pyobjc():
|
||||
"""Returns contents of clipboard"""
|
||||
board = AppKit.NSPasteboard.generalPasteboard()
|
||||
content = board.stringForType_(AppKit.NSStringPboardType)
|
||||
return content
|
||||
|
||||
return copy_osx_pyobjc, paste_osx_pyobjc
|
||||
|
||||
|
||||
def init_qt_clipboard():
|
||||
global QApplication
|
||||
# $DISPLAY should exist
|
||||
|
||||
# Try to import from qtpy, but if that fails try PyQt5 then PyQt4
|
||||
try:
|
||||
from qtpy.QtWidgets import QApplication
|
||||
except ImportError:
|
||||
try:
|
||||
from PyQt5.QtWidgets import QApplication
|
||||
except ImportError:
|
||||
from PyQt4.QtGui import QApplication
|
||||
|
||||
app = QApplication.instance()
|
||||
if app is None:
|
||||
app = QApplication([])
|
||||
|
||||
def copy_qt(text):
|
||||
text = _stringifyText(text) # Converts non-str values to str.
|
||||
cb = app.clipboard()
|
||||
cb.setText(text)
|
||||
|
||||
def paste_qt() -> str:
|
||||
cb = app.clipboard()
|
||||
return str(cb.text())
|
||||
|
||||
return copy_qt, paste_qt
|
||||
|
||||
|
||||
def init_xclip_clipboard():
|
||||
DEFAULT_SELECTION = "c"
|
||||
PRIMARY_SELECTION = "p"
|
||||
|
||||
def copy_xclip(text, primary=False):
|
||||
text = _stringifyText(text) # Converts non-str values to str.
|
||||
selection = DEFAULT_SELECTION
|
||||
if primary:
|
||||
selection = PRIMARY_SELECTION
|
||||
with subprocess.Popen(
|
||||
["xclip", "-selection", selection], stdin=subprocess.PIPE, close_fds=True
|
||||
) as p:
|
||||
p.communicate(input=text.encode(ENCODING))
|
||||
|
||||
def paste_xclip(primary=False):
|
||||
selection = DEFAULT_SELECTION
|
||||
if primary:
|
||||
selection = PRIMARY_SELECTION
|
||||
with subprocess.Popen(
|
||||
["xclip", "-selection", selection, "-o"],
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE,
|
||||
close_fds=True,
|
||||
) as p:
|
||||
stdout = p.communicate()[0]
|
||||
# Intentionally ignore extraneous output on stderr when clipboard is empty
|
||||
return stdout.decode(ENCODING)
|
||||
|
||||
return copy_xclip, paste_xclip
|
||||
|
||||
|
||||
def init_xsel_clipboard():
|
||||
DEFAULT_SELECTION = "-b"
|
||||
PRIMARY_SELECTION = "-p"
|
||||
|
||||
def copy_xsel(text, primary=False):
|
||||
text = _stringifyText(text) # Converts non-str values to str.
|
||||
selection_flag = DEFAULT_SELECTION
|
||||
if primary:
|
||||
selection_flag = PRIMARY_SELECTION
|
||||
with subprocess.Popen(
|
||||
["xsel", selection_flag, "-i"], stdin=subprocess.PIPE, close_fds=True
|
||||
) as p:
|
||||
p.communicate(input=text.encode(ENCODING))
|
||||
|
||||
def paste_xsel(primary=False):
|
||||
selection_flag = DEFAULT_SELECTION
|
||||
if primary:
|
||||
selection_flag = PRIMARY_SELECTION
|
||||
with subprocess.Popen(
|
||||
["xsel", selection_flag, "-o"], stdout=subprocess.PIPE, close_fds=True
|
||||
) as p:
|
||||
stdout = p.communicate()[0]
|
||||
return stdout.decode(ENCODING)
|
||||
|
||||
return copy_xsel, paste_xsel
|
||||
|
||||
|
||||
def init_wl_clipboard():
|
||||
PRIMARY_SELECTION = "-p"
|
||||
|
||||
def copy_wl(text, primary=False):
|
||||
text = _stringifyText(text) # Converts non-str values to str.
|
||||
args = ["wl-copy"]
|
||||
if primary:
|
||||
args.append(PRIMARY_SELECTION)
|
||||
if not text:
|
||||
args.append("--clear")
|
||||
subprocess.check_call(args, close_fds=True)
|
||||
else:
|
||||
p = subprocess.Popen(args, stdin=subprocess.PIPE, close_fds=True)
|
||||
p.communicate(input=text.encode(ENCODING))
|
||||
|
||||
def paste_wl(primary=False):
|
||||
args = ["wl-paste", "-n"]
|
||||
if primary:
|
||||
args.append(PRIMARY_SELECTION)
|
||||
p = subprocess.Popen(args, stdout=subprocess.PIPE, close_fds=True)
|
||||
stdout, _stderr = p.communicate()
|
||||
return stdout.decode(ENCODING)
|
||||
|
||||
return copy_wl, paste_wl
|
||||
|
||||
|
||||
def init_klipper_clipboard():
|
||||
def copy_klipper(text):
|
||||
text = _stringifyText(text) # Converts non-str values to str.
|
||||
with subprocess.Popen(
|
||||
[
|
||||
"qdbus",
|
||||
"org.kde.klipper",
|
||||
"/klipper",
|
||||
"setClipboardContents",
|
||||
text.encode(ENCODING),
|
||||
],
|
||||
stdin=subprocess.PIPE,
|
||||
close_fds=True,
|
||||
) as p:
|
||||
p.communicate(input=None)
|
||||
|
||||
def paste_klipper():
|
||||
with subprocess.Popen(
|
||||
["qdbus", "org.kde.klipper", "/klipper", "getClipboardContents"],
|
||||
stdout=subprocess.PIPE,
|
||||
close_fds=True,
|
||||
) as p:
|
||||
stdout = p.communicate()[0]
|
||||
|
||||
# Workaround for https://bugs.kde.org/show_bug.cgi?id=342874
|
||||
# TODO: https://github.com/asweigart/pyperclip/issues/43
|
||||
clipboardContents = stdout.decode(ENCODING)
|
||||
# even if blank, Klipper will append a newline at the end
|
||||
assert len(clipboardContents) > 0
|
||||
# make sure that newline is there
|
||||
assert clipboardContents.endswith("\n")
|
||||
if clipboardContents.endswith("\n"):
|
||||
clipboardContents = clipboardContents[:-1]
|
||||
return clipboardContents
|
||||
|
||||
return copy_klipper, paste_klipper
|
||||
|
||||
|
||||
def init_dev_clipboard_clipboard():
|
||||
def copy_dev_clipboard(text):
|
||||
text = _stringifyText(text) # Converts non-str values to str.
|
||||
if text == "":
|
||||
warnings.warn(
|
||||
"Pyperclip cannot copy a blank string to the clipboard on Cygwin. "
|
||||
"This is effectively a no-op.",
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
if "\r" in text:
|
||||
warnings.warn(
|
||||
"Pyperclip cannot handle \\r characters on Cygwin.",
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
|
||||
with open("/dev/clipboard", "w", encoding="utf-8") as fd:
|
||||
fd.write(text)
|
||||
|
||||
def paste_dev_clipboard() -> str:
|
||||
with open("/dev/clipboard", encoding="utf-8") as fd:
|
||||
content = fd.read()
|
||||
return content
|
||||
|
||||
return copy_dev_clipboard, paste_dev_clipboard
|
||||
|
||||
|
||||
def init_no_clipboard():
|
||||
class ClipboardUnavailable:
|
||||
def __call__(self, *args, **kwargs):
|
||||
raise PyperclipException(EXCEPT_MSG)
|
||||
|
||||
def __bool__(self) -> bool:
|
||||
return False
|
||||
|
||||
return ClipboardUnavailable(), ClipboardUnavailable()
|
||||
|
||||
|
||||
# Windows-related clipboard functions:
|
||||
class CheckedCall:
|
||||
def __init__(self, f) -> None:
|
||||
super().__setattr__("f", f)
|
||||
|
||||
def __call__(self, *args):
|
||||
ret = self.f(*args)
|
||||
if not ret and get_errno():
|
||||
raise PyperclipWindowsException("Error calling " + self.f.__name__)
|
||||
return ret
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
setattr(self.f, key, value)
|
||||
|
||||
|
||||
def init_windows_clipboard():
|
||||
global HGLOBAL, LPVOID, DWORD, LPCSTR, INT
|
||||
global HWND, HINSTANCE, HMENU, BOOL, UINT, HANDLE
|
||||
from ctypes.wintypes import (
|
||||
BOOL,
|
||||
DWORD,
|
||||
HANDLE,
|
||||
HGLOBAL,
|
||||
HINSTANCE,
|
||||
HMENU,
|
||||
HWND,
|
||||
INT,
|
||||
LPCSTR,
|
||||
LPVOID,
|
||||
UINT,
|
||||
)
|
||||
|
||||
windll = ctypes.windll
|
||||
msvcrt = ctypes.CDLL("msvcrt")
|
||||
|
||||
safeCreateWindowExA = CheckedCall(windll.user32.CreateWindowExA)
|
||||
safeCreateWindowExA.argtypes = [
|
||||
DWORD,
|
||||
LPCSTR,
|
||||
LPCSTR,
|
||||
DWORD,
|
||||
INT,
|
||||
INT,
|
||||
INT,
|
||||
INT,
|
||||
HWND,
|
||||
HMENU,
|
||||
HINSTANCE,
|
||||
LPVOID,
|
||||
]
|
||||
safeCreateWindowExA.restype = HWND
|
||||
|
||||
safeDestroyWindow = CheckedCall(windll.user32.DestroyWindow)
|
||||
safeDestroyWindow.argtypes = [HWND]
|
||||
safeDestroyWindow.restype = BOOL
|
||||
|
||||
OpenClipboard = windll.user32.OpenClipboard
|
||||
OpenClipboard.argtypes = [HWND]
|
||||
OpenClipboard.restype = BOOL
|
||||
|
||||
safeCloseClipboard = CheckedCall(windll.user32.CloseClipboard)
|
||||
safeCloseClipboard.argtypes = []
|
||||
safeCloseClipboard.restype = BOOL
|
||||
|
||||
safeEmptyClipboard = CheckedCall(windll.user32.EmptyClipboard)
|
||||
safeEmptyClipboard.argtypes = []
|
||||
safeEmptyClipboard.restype = BOOL
|
||||
|
||||
safeGetClipboardData = CheckedCall(windll.user32.GetClipboardData)
|
||||
safeGetClipboardData.argtypes = [UINT]
|
||||
safeGetClipboardData.restype = HANDLE
|
||||
|
||||
safeSetClipboardData = CheckedCall(windll.user32.SetClipboardData)
|
||||
safeSetClipboardData.argtypes = [UINT, HANDLE]
|
||||
safeSetClipboardData.restype = HANDLE
|
||||
|
||||
safeGlobalAlloc = CheckedCall(windll.kernel32.GlobalAlloc)
|
||||
safeGlobalAlloc.argtypes = [UINT, c_size_t]
|
||||
safeGlobalAlloc.restype = HGLOBAL
|
||||
|
||||
safeGlobalLock = CheckedCall(windll.kernel32.GlobalLock)
|
||||
safeGlobalLock.argtypes = [HGLOBAL]
|
||||
safeGlobalLock.restype = LPVOID
|
||||
|
||||
safeGlobalUnlock = CheckedCall(windll.kernel32.GlobalUnlock)
|
||||
safeGlobalUnlock.argtypes = [HGLOBAL]
|
||||
safeGlobalUnlock.restype = BOOL
|
||||
|
||||
wcslen = CheckedCall(msvcrt.wcslen)
|
||||
wcslen.argtypes = [c_wchar_p]
|
||||
wcslen.restype = UINT
|
||||
|
||||
GMEM_MOVEABLE = 0x0002
|
||||
CF_UNICODETEXT = 13
|
||||
|
||||
@contextlib.contextmanager
|
||||
def window():
|
||||
"""
|
||||
Context that provides a valid Windows hwnd.
|
||||
"""
|
||||
# we really just need the hwnd, so setting "STATIC"
|
||||
# as predefined lpClass is just fine.
|
||||
hwnd = safeCreateWindowExA(
|
||||
0, b"STATIC", None, 0, 0, 0, 0, 0, None, None, None, None
|
||||
)
|
||||
try:
|
||||
yield hwnd
|
||||
finally:
|
||||
safeDestroyWindow(hwnd)
|
||||
|
||||
@contextlib.contextmanager
|
||||
def clipboard(hwnd):
|
||||
"""
|
||||
Context manager that opens the clipboard and prevents
|
||||
other applications from modifying the clipboard content.
|
||||
"""
|
||||
# We may not get the clipboard handle immediately because
|
||||
# some other application is accessing it (?)
|
||||
# We try for at least 500ms to get the clipboard.
|
||||
t = time.time() + 0.5
|
||||
success = False
|
||||
while time.time() < t:
|
||||
success = OpenClipboard(hwnd)
|
||||
if success:
|
||||
break
|
||||
time.sleep(0.01)
|
||||
if not success:
|
||||
raise PyperclipWindowsException("Error calling OpenClipboard")
|
||||
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
safeCloseClipboard()
|
||||
|
||||
def copy_windows(text):
|
||||
# This function is heavily based on
|
||||
# http://msdn.com/ms649016#_win32_Copying_Information_to_the_Clipboard
|
||||
|
||||
text = _stringifyText(text) # Converts non-str values to str.
|
||||
|
||||
with window() as hwnd:
|
||||
# http://msdn.com/ms649048
|
||||
# If an application calls OpenClipboard with hwnd set to NULL,
|
||||
# EmptyClipboard sets the clipboard owner to NULL;
|
||||
# this causes SetClipboardData to fail.
|
||||
# => We need a valid hwnd to copy something.
|
||||
with clipboard(hwnd):
|
||||
safeEmptyClipboard()
|
||||
|
||||
if text:
|
||||
# http://msdn.com/ms649051
|
||||
# If the hMem parameter identifies a memory object,
|
||||
# the object must have been allocated using the
|
||||
# function with the GMEM_MOVEABLE flag.
|
||||
count = wcslen(text) + 1
|
||||
handle = safeGlobalAlloc(GMEM_MOVEABLE, count * sizeof(c_wchar))
|
||||
locked_handle = safeGlobalLock(handle)
|
||||
|
||||
ctypes.memmove(
|
||||
c_wchar_p(locked_handle),
|
||||
c_wchar_p(text),
|
||||
count * sizeof(c_wchar),
|
||||
)
|
||||
|
||||
safeGlobalUnlock(handle)
|
||||
safeSetClipboardData(CF_UNICODETEXT, handle)
|
||||
|
||||
def paste_windows():
|
||||
with clipboard(None):
|
||||
handle = safeGetClipboardData(CF_UNICODETEXT)
|
||||
if not handle:
|
||||
# GetClipboardData may return NULL with errno == NO_ERROR
|
||||
# if the clipboard is empty.
|
||||
# (Also, it may return a handle to an empty buffer,
|
||||
# but technically that's not empty)
|
||||
return ""
|
||||
return c_wchar_p(handle).value
|
||||
|
||||
return copy_windows, paste_windows
|
||||
|
||||
|
||||
def init_wsl_clipboard():
|
||||
def copy_wsl(text):
|
||||
text = _stringifyText(text) # Converts non-str values to str.
|
||||
with subprocess.Popen(["clip.exe"], stdin=subprocess.PIPE, close_fds=True) as p:
|
||||
p.communicate(input=text.encode(ENCODING))
|
||||
|
||||
def paste_wsl():
|
||||
with subprocess.Popen(
|
||||
["powershell.exe", "-command", "Get-Clipboard"],
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE,
|
||||
close_fds=True,
|
||||
) as p:
|
||||
stdout = p.communicate()[0]
|
||||
# WSL appends "\r\n" to the contents.
|
||||
return stdout[:-2].decode(ENCODING)
|
||||
|
||||
return copy_wsl, paste_wsl
|
||||
|
||||
|
||||
# Automatic detection of clipboard mechanisms
|
||||
# and importing is done in determine_clipboard():
|
||||
def determine_clipboard():
|
||||
"""
|
||||
Determine the OS/platform and set the copy() and paste() functions
|
||||
accordingly.
|
||||
"""
|
||||
global Foundation, AppKit, qtpy, PyQt4, PyQt5
|
||||
|
||||
# Setup for the CYGWIN platform:
|
||||
if (
|
||||
"cygwin" in platform.system().lower()
|
||||
): # Cygwin has a variety of values returned by platform.system(),
|
||||
# such as 'CYGWIN_NT-6.1'
|
||||
# FIXME(pyperclip#55): pyperclip currently does not support Cygwin,
|
||||
# see https://github.com/asweigart/pyperclip/issues/55
|
||||
if os.path.exists("/dev/clipboard"):
|
||||
warnings.warn(
|
||||
"Pyperclip's support for Cygwin is not perfect, "
|
||||
"see https://github.com/asweigart/pyperclip/issues/55",
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
return init_dev_clipboard_clipboard()
|
||||
|
||||
# Setup for the WINDOWS platform:
|
||||
elif os.name == "nt" or platform.system() == "Windows":
|
||||
return init_windows_clipboard()
|
||||
|
||||
if platform.system() == "Linux":
|
||||
if _executable_exists("wslconfig.exe"):
|
||||
return init_wsl_clipboard()
|
||||
|
||||
# Setup for the macOS platform:
|
||||
if os.name == "mac" or platform.system() == "Darwin":
|
||||
try:
|
||||
import AppKit
|
||||
import Foundation # check if pyobjc is installed
|
||||
except ImportError:
|
||||
return init_osx_pbcopy_clipboard()
|
||||
else:
|
||||
return init_osx_pyobjc_clipboard()
|
||||
|
||||
# Setup for the LINUX platform:
|
||||
if HAS_DISPLAY:
|
||||
if os.environ.get("WAYLAND_DISPLAY") and _executable_exists("wl-copy"):
|
||||
return init_wl_clipboard()
|
||||
if _executable_exists("xsel"):
|
||||
return init_xsel_clipboard()
|
||||
if _executable_exists("xclip"):
|
||||
return init_xclip_clipboard()
|
||||
if _executable_exists("klipper") and _executable_exists("qdbus"):
|
||||
return init_klipper_clipboard()
|
||||
|
||||
try:
|
||||
# qtpy is a small abstraction layer that lets you write applications
|
||||
# using a single api call to either PyQt or PySide.
|
||||
# https://pypi.python.org/project/QtPy
|
||||
import qtpy # check if qtpy is installed
|
||||
except ImportError:
|
||||
# If qtpy isn't installed, fall back on importing PyQt4.
|
||||
try:
|
||||
import PyQt5 # check if PyQt5 is installed
|
||||
except ImportError:
|
||||
try:
|
||||
import PyQt4 # check if PyQt4 is installed
|
||||
except ImportError:
|
||||
pass # We want to fail fast for all non-ImportError exceptions.
|
||||
else:
|
||||
return init_qt_clipboard()
|
||||
else:
|
||||
return init_qt_clipboard()
|
||||
else:
|
||||
return init_qt_clipboard()
|
||||
|
||||
return init_no_clipboard()
|
||||
|
||||
|
||||
def set_clipboard(clipboard):
|
||||
"""
|
||||
Explicitly sets the clipboard mechanism. The "clipboard mechanism" is how
|
||||
the copy() and paste() functions interact with the operating system to
|
||||
implement the copy/paste feature. The clipboard parameter must be one of:
|
||||
- pbcopy
|
||||
- pyobjc (default on macOS)
|
||||
- qt
|
||||
- xclip
|
||||
- xsel
|
||||
- klipper
|
||||
- windows (default on Windows)
|
||||
- no (this is what is set when no clipboard mechanism can be found)
|
||||
"""
|
||||
global copy, paste
|
||||
|
||||
clipboard_types = {
|
||||
"pbcopy": init_osx_pbcopy_clipboard,
|
||||
"pyobjc": init_osx_pyobjc_clipboard,
|
||||
"qt": init_qt_clipboard, # TODO - split this into 'qtpy', 'pyqt4', and 'pyqt5'
|
||||
"xclip": init_xclip_clipboard,
|
||||
"xsel": init_xsel_clipboard,
|
||||
"wl-clipboard": init_wl_clipboard,
|
||||
"klipper": init_klipper_clipboard,
|
||||
"windows": init_windows_clipboard,
|
||||
"no": init_no_clipboard,
|
||||
}
|
||||
|
||||
if clipboard not in clipboard_types:
|
||||
allowed_clipboard_types = [repr(_) for _ in clipboard_types]
|
||||
raise ValueError(
|
||||
f"Argument must be one of {', '.join(allowed_clipboard_types)}"
|
||||
)
|
||||
|
||||
# Sets pyperclip's copy() and paste() functions:
|
||||
copy, paste = clipboard_types[clipboard]()
|
||||
|
||||
|
||||
def lazy_load_stub_copy(text):
|
||||
"""
|
||||
A stub function for copy(), which will load the real copy() function when
|
||||
called so that the real copy() function is used for later calls.
|
||||
|
||||
This allows users to import pyperclip without having determine_clipboard()
|
||||
automatically run, which will automatically select a clipboard mechanism.
|
||||
This could be a problem if it selects, say, the memory-heavy PyQt4 module
|
||||
but the user was just going to immediately call set_clipboard() to use a
|
||||
different clipboard mechanism.
|
||||
|
||||
The lazy loading this stub function implements gives the user a chance to
|
||||
call set_clipboard() to pick another clipboard mechanism. Or, if the user
|
||||
simply calls copy() or paste() without calling set_clipboard() first,
|
||||
will fall back on whatever clipboard mechanism that determine_clipboard()
|
||||
automatically chooses.
|
||||
"""
|
||||
global copy, paste
|
||||
copy, paste = determine_clipboard()
|
||||
return copy(text)
|
||||
|
||||
|
||||
def lazy_load_stub_paste():
|
||||
"""
|
||||
A stub function for paste(), which will load the real paste() function when
|
||||
called so that the real paste() function is used for later calls.
|
||||
|
||||
This allows users to import pyperclip without having determine_clipboard()
|
||||
automatically run, which will automatically select a clipboard mechanism.
|
||||
This could be a problem if it selects, say, the memory-heavy PyQt4 module
|
||||
but the user was just going to immediately call set_clipboard() to use a
|
||||
different clipboard mechanism.
|
||||
|
||||
The lazy loading this stub function implements gives the user a chance to
|
||||
call set_clipboard() to pick another clipboard mechanism. Or, if the user
|
||||
simply calls copy() or paste() without calling set_clipboard() first,
|
||||
will fall back on whatever clipboard mechanism that determine_clipboard()
|
||||
automatically chooses.
|
||||
"""
|
||||
global copy, paste
|
||||
copy, paste = determine_clipboard()
|
||||
return paste()
|
||||
|
||||
|
||||
def is_available() -> bool:
|
||||
return copy != lazy_load_stub_copy and paste != lazy_load_stub_paste
|
||||
|
||||
|
||||
# Initially, copy() and paste() are set to lazy loading wrappers which will
|
||||
# set `copy` and `paste` to real functions the first time they're used, unless
|
||||
# set_clipboard() or determine_clipboard() is called first.
|
||||
copy, paste = lazy_load_stub_copy, lazy_load_stub_paste
|
||||
|
||||
|
||||
def waitForPaste(timeout=None):
|
||||
"""This function call blocks until a non-empty text string exists on the
|
||||
clipboard. It returns this text.
|
||||
|
||||
This function raises PyperclipTimeoutException if timeout was set to
|
||||
a number of seconds that has elapsed without non-empty text being put on
|
||||
the clipboard."""
|
||||
startTime = time.time()
|
||||
while True:
|
||||
clipboardText = paste()
|
||||
if clipboardText != "":
|
||||
return clipboardText
|
||||
time.sleep(0.01)
|
||||
|
||||
if timeout is not None and time.time() > startTime + timeout:
|
||||
raise PyperclipTimeoutException(
|
||||
"waitForPaste() timed out after " + str(timeout) + " seconds."
|
||||
)
|
||||
|
||||
|
||||
def waitForNewPaste(timeout=None):
|
||||
"""This function call blocks until a new text string exists on the
|
||||
clipboard that is different from the text that was there when the function
|
||||
was first called. It returns this text.
|
||||
|
||||
This function raises PyperclipTimeoutException if timeout was set to
|
||||
a number of seconds that has elapsed without non-empty text being put on
|
||||
the clipboard."""
|
||||
startTime = time.time()
|
||||
originalText = paste()
|
||||
while True:
|
||||
currentText = paste()
|
||||
if currentText != originalText:
|
||||
return currentText
|
||||
time.sleep(0.01)
|
||||
|
||||
if timeout is not None and time.time() > startTime + timeout:
|
||||
raise PyperclipTimeoutException(
|
||||
"waitForNewPaste() timed out after " + str(timeout) + " seconds."
|
||||
)
|
||||
|
||||
|
||||
__all__ = [
|
||||
"copy",
|
||||
"paste",
|
||||
"waitForPaste",
|
||||
"waitForNewPaste",
|
||||
"set_clipboard",
|
||||
"determine_clipboard",
|
||||
]
|
||||
|
||||
# pandas aliases
|
||||
clipboard_get = paste
|
||||
clipboard_set = copy
|
Binary file not shown.
197
venv/lib/python3.12/site-packages/pandas/io/clipboards.py
Normal file
197
venv/lib/python3.12/site-packages/pandas/io/clipboards.py
Normal file
@ -0,0 +1,197 @@
|
||||
""" io on the clipboard """
|
||||
from __future__ import annotations
|
||||
|
||||
from io import StringIO
|
||||
from typing import TYPE_CHECKING
|
||||
import warnings
|
||||
|
||||
from pandas._libs import lib
|
||||
from pandas.util._exceptions import find_stack_level
|
||||
from pandas.util._validators import check_dtype_backend
|
||||
|
||||
from pandas.core.dtypes.generic import ABCDataFrame
|
||||
|
||||
from pandas import (
|
||||
get_option,
|
||||
option_context,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pandas._typing import DtypeBackend
|
||||
|
||||
|
||||
def read_clipboard(
|
||||
sep: str = r"\s+",
|
||||
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
|
||||
**kwargs,
|
||||
): # pragma: no cover
|
||||
r"""
|
||||
Read text from clipboard and pass to :func:`~pandas.read_csv`.
|
||||
|
||||
Parses clipboard contents similar to how CSV files are parsed
|
||||
using :func:`~pandas.read_csv`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
sep : str, default '\\s+'
|
||||
A string or regex delimiter. The default of ``'\\s+'`` denotes
|
||||
one or more whitespace characters.
|
||||
|
||||
dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable'
|
||||
Back-end data type applied to the resultant :class:`DataFrame`
|
||||
(still experimental). Behaviour is as follows:
|
||||
|
||||
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
|
||||
(default).
|
||||
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
|
||||
DataFrame.
|
||||
|
||||
.. versionadded:: 2.0
|
||||
|
||||
**kwargs
|
||||
See :func:`~pandas.read_csv` for the full argument list.
|
||||
|
||||
Returns
|
||||
-------
|
||||
DataFrame
|
||||
A parsed :class:`~pandas.DataFrame` object.
|
||||
|
||||
See Also
|
||||
--------
|
||||
DataFrame.to_clipboard : Copy object to the system clipboard.
|
||||
read_csv : Read a comma-separated values (csv) file into DataFrame.
|
||||
read_fwf : Read a table of fixed-width formatted lines into DataFrame.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C'])
|
||||
>>> df.to_clipboard() # doctest: +SKIP
|
||||
>>> pd.read_clipboard() # doctest: +SKIP
|
||||
A B C
|
||||
0 1 2 3
|
||||
1 4 5 6
|
||||
"""
|
||||
encoding = kwargs.pop("encoding", "utf-8")
|
||||
|
||||
# only utf-8 is valid for passed value because that's what clipboard
|
||||
# supports
|
||||
if encoding is not None and encoding.lower().replace("-", "") != "utf8":
|
||||
raise NotImplementedError("reading from clipboard only supports utf-8 encoding")
|
||||
|
||||
check_dtype_backend(dtype_backend)
|
||||
|
||||
from pandas.io.clipboard import clipboard_get
|
||||
from pandas.io.parsers import read_csv
|
||||
|
||||
text = clipboard_get()
|
||||
|
||||
# Try to decode (if needed, as "text" might already be a string here).
|
||||
try:
|
||||
text = text.decode(kwargs.get("encoding") or get_option("display.encoding"))
|
||||
except AttributeError:
|
||||
pass
|
||||
|
||||
# Excel copies into clipboard with \t separation
|
||||
# inspect no more then the 10 first lines, if they
|
||||
# all contain an equal number (>0) of tabs, infer
|
||||
# that this came from excel and set 'sep' accordingly
|
||||
lines = text[:10000].split("\n")[:-1][:10]
|
||||
|
||||
# Need to remove leading white space, since read_csv
|
||||
# accepts:
|
||||
# a b
|
||||
# 0 1 2
|
||||
# 1 3 4
|
||||
|
||||
counts = {x.lstrip(" ").count("\t") for x in lines}
|
||||
if len(lines) > 1 and len(counts) == 1 and counts.pop() != 0:
|
||||
sep = "\t"
|
||||
# check the number of leading tabs in the first line
|
||||
# to account for index columns
|
||||
index_length = len(lines[0]) - len(lines[0].lstrip(" \t"))
|
||||
if index_length != 0:
|
||||
kwargs.setdefault("index_col", list(range(index_length)))
|
||||
|
||||
# Edge case where sep is specified to be None, return to default
|
||||
if sep is None and kwargs.get("delim_whitespace") is None:
|
||||
sep = r"\s+"
|
||||
|
||||
# Regex separator currently only works with python engine.
|
||||
# Default to python if separator is multi-character (regex)
|
||||
if len(sep) > 1 and kwargs.get("engine") is None:
|
||||
kwargs["engine"] = "python"
|
||||
elif len(sep) > 1 and kwargs.get("engine") == "c":
|
||||
warnings.warn(
|
||||
"read_clipboard with regex separator does not work properly with c engine.",
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
|
||||
return read_csv(StringIO(text), sep=sep, dtype_backend=dtype_backend, **kwargs)
|
||||
|
||||
|
||||
def to_clipboard(
|
||||
obj, excel: bool | None = True, sep: str | None = None, **kwargs
|
||||
) -> None: # pragma: no cover
|
||||
"""
|
||||
Attempt to write text representation of object to the system clipboard
|
||||
The clipboard can be then pasted into Excel for example.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
obj : the object to write to the clipboard
|
||||
excel : bool, defaults to True
|
||||
if True, use the provided separator, writing in a csv
|
||||
format for allowing easy pasting into excel.
|
||||
if False, write a string representation of the object
|
||||
to the clipboard
|
||||
sep : optional, defaults to tab
|
||||
other keywords are passed to to_csv
|
||||
|
||||
Notes
|
||||
-----
|
||||
Requirements for your platform
|
||||
- Linux: xclip, or xsel (with PyQt4 modules)
|
||||
- Windows:
|
||||
- OS X:
|
||||
"""
|
||||
encoding = kwargs.pop("encoding", "utf-8")
|
||||
|
||||
# testing if an invalid encoding is passed to clipboard
|
||||
if encoding is not None and encoding.lower().replace("-", "") != "utf8":
|
||||
raise ValueError("clipboard only supports utf-8 encoding")
|
||||
|
||||
from pandas.io.clipboard import clipboard_set
|
||||
|
||||
if excel is None:
|
||||
excel = True
|
||||
|
||||
if excel:
|
||||
try:
|
||||
if sep is None:
|
||||
sep = "\t"
|
||||
buf = StringIO()
|
||||
|
||||
# clipboard_set (pyperclip) expects unicode
|
||||
obj.to_csv(buf, sep=sep, encoding="utf-8", **kwargs)
|
||||
text = buf.getvalue()
|
||||
|
||||
clipboard_set(text)
|
||||
return
|
||||
except TypeError:
|
||||
warnings.warn(
|
||||
"to_clipboard in excel mode requires a single character separator.",
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
elif sep is not None:
|
||||
warnings.warn(
|
||||
"to_clipboard with excel=False ignores the sep argument.",
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
|
||||
if isinstance(obj, ABCDataFrame):
|
||||
# str(df) has various unhelpful defaults, like truncation
|
||||
with option_context("display.max_colwidth", None):
|
||||
objstr = obj.to_string(**kwargs)
|
||||
else:
|
||||
objstr = str(obj)
|
||||
clipboard_set(objstr)
|
1267
venv/lib/python3.12/site-packages/pandas/io/common.py
Normal file
1267
venv/lib/python3.12/site-packages/pandas/io/common.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,19 @@
|
||||
from pandas.io.excel._base import (
|
||||
ExcelFile,
|
||||
ExcelWriter,
|
||||
read_excel,
|
||||
)
|
||||
from pandas.io.excel._odswriter import ODSWriter as _ODSWriter
|
||||
from pandas.io.excel._openpyxl import OpenpyxlWriter as _OpenpyxlWriter
|
||||
from pandas.io.excel._util import register_writer
|
||||
from pandas.io.excel._xlsxwriter import XlsxWriter as _XlsxWriter
|
||||
|
||||
__all__ = ["read_excel", "ExcelWriter", "ExcelFile"]
|
||||
|
||||
|
||||
register_writer(_OpenpyxlWriter)
|
||||
|
||||
register_writer(_XlsxWriter)
|
||||
|
||||
|
||||
register_writer(_ODSWriter)
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
1659
venv/lib/python3.12/site-packages/pandas/io/excel/_base.py
Normal file
1659
venv/lib/python3.12/site-packages/pandas/io/excel/_base.py
Normal file
File diff suppressed because it is too large
Load Diff
121
venv/lib/python3.12/site-packages/pandas/io/excel/_calamine.py
Normal file
121
venv/lib/python3.12/site-packages/pandas/io/excel/_calamine.py
Normal file
@ -0,0 +1,121 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from datetime import (
|
||||
date,
|
||||
datetime,
|
||||
time,
|
||||
timedelta,
|
||||
)
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Union,
|
||||
)
|
||||
|
||||
from pandas.compat._optional import import_optional_dependency
|
||||
from pandas.util._decorators import doc
|
||||
|
||||
import pandas as pd
|
||||
from pandas.core.shared_docs import _shared_docs
|
||||
|
||||
from pandas.io.excel._base import BaseExcelReader
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from python_calamine import (
|
||||
CalamineSheet,
|
||||
CalamineWorkbook,
|
||||
)
|
||||
|
||||
from pandas._typing import (
|
||||
FilePath,
|
||||
NaTType,
|
||||
ReadBuffer,
|
||||
Scalar,
|
||||
StorageOptions,
|
||||
)
|
||||
|
||||
_CellValue = Union[int, float, str, bool, time, date, datetime, timedelta]
|
||||
|
||||
|
||||
class CalamineReader(BaseExcelReader["CalamineWorkbook"]):
|
||||
@doc(storage_options=_shared_docs["storage_options"])
|
||||
def __init__(
|
||||
self,
|
||||
filepath_or_buffer: FilePath | ReadBuffer[bytes],
|
||||
storage_options: StorageOptions | None = None,
|
||||
engine_kwargs: dict | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Reader using calamine engine (xlsx/xls/xlsb/ods).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
filepath_or_buffer : str, path to be parsed or
|
||||
an open readable stream.
|
||||
{storage_options}
|
||||
engine_kwargs : dict, optional
|
||||
Arbitrary keyword arguments passed to excel engine.
|
||||
"""
|
||||
import_optional_dependency("python_calamine")
|
||||
super().__init__(
|
||||
filepath_or_buffer,
|
||||
storage_options=storage_options,
|
||||
engine_kwargs=engine_kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def _workbook_class(self) -> type[CalamineWorkbook]:
|
||||
from python_calamine import CalamineWorkbook
|
||||
|
||||
return CalamineWorkbook
|
||||
|
||||
def load_workbook(
|
||||
self, filepath_or_buffer: FilePath | ReadBuffer[bytes], engine_kwargs: Any
|
||||
) -> CalamineWorkbook:
|
||||
from python_calamine import load_workbook
|
||||
|
||||
return load_workbook(filepath_or_buffer, **engine_kwargs)
|
||||
|
||||
@property
|
||||
def sheet_names(self) -> list[str]:
|
||||
from python_calamine import SheetTypeEnum
|
||||
|
||||
return [
|
||||
sheet.name
|
||||
for sheet in self.book.sheets_metadata
|
||||
if sheet.typ == SheetTypeEnum.WorkSheet
|
||||
]
|
||||
|
||||
def get_sheet_by_name(self, name: str) -> CalamineSheet:
|
||||
self.raise_if_bad_sheet_by_name(name)
|
||||
return self.book.get_sheet_by_name(name)
|
||||
|
||||
def get_sheet_by_index(self, index: int) -> CalamineSheet:
|
||||
self.raise_if_bad_sheet_by_index(index)
|
||||
return self.book.get_sheet_by_index(index)
|
||||
|
||||
def get_sheet_data(
|
||||
self, sheet: CalamineSheet, file_rows_needed: int | None = None
|
||||
) -> list[list[Scalar | NaTType | time]]:
|
||||
def _convert_cell(value: _CellValue) -> Scalar | NaTType | time:
|
||||
if isinstance(value, float):
|
||||
val = int(value)
|
||||
if val == value:
|
||||
return val
|
||||
else:
|
||||
return value
|
||||
elif isinstance(value, date):
|
||||
return pd.Timestamp(value)
|
||||
elif isinstance(value, timedelta):
|
||||
return pd.Timedelta(value)
|
||||
elif isinstance(value, time):
|
||||
return value
|
||||
|
||||
return value
|
||||
|
||||
rows: list[list[_CellValue]] = sheet.to_python(
|
||||
skip_empty_area=False, nrows=file_rows_needed
|
||||
)
|
||||
data = [[_convert_cell(cell) for cell in row] for row in rows]
|
||||
|
||||
return data
|
253
venv/lib/python3.12/site-packages/pandas/io/excel/_odfreader.py
Normal file
253
venv/lib/python3.12/site-packages/pandas/io/excel/_odfreader.py
Normal file
@ -0,0 +1,253 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
cast,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas._typing import (
|
||||
FilePath,
|
||||
ReadBuffer,
|
||||
Scalar,
|
||||
StorageOptions,
|
||||
)
|
||||
from pandas.compat._optional import import_optional_dependency
|
||||
from pandas.util._decorators import doc
|
||||
|
||||
import pandas as pd
|
||||
from pandas.core.shared_docs import _shared_docs
|
||||
|
||||
from pandas.io.excel._base import BaseExcelReader
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from odf.opendocument import OpenDocument
|
||||
|
||||
from pandas._libs.tslibs.nattype import NaTType
|
||||
|
||||
|
||||
@doc(storage_options=_shared_docs["storage_options"])
|
||||
class ODFReader(BaseExcelReader["OpenDocument"]):
|
||||
def __init__(
|
||||
self,
|
||||
filepath_or_buffer: FilePath | ReadBuffer[bytes],
|
||||
storage_options: StorageOptions | None = None,
|
||||
engine_kwargs: dict | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Read tables out of OpenDocument formatted files.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
filepath_or_buffer : str, path to be parsed or
|
||||
an open readable stream.
|
||||
{storage_options}
|
||||
engine_kwargs : dict, optional
|
||||
Arbitrary keyword arguments passed to excel engine.
|
||||
"""
|
||||
import_optional_dependency("odf")
|
||||
super().__init__(
|
||||
filepath_or_buffer,
|
||||
storage_options=storage_options,
|
||||
engine_kwargs=engine_kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def _workbook_class(self) -> type[OpenDocument]:
|
||||
from odf.opendocument import OpenDocument
|
||||
|
||||
return OpenDocument
|
||||
|
||||
def load_workbook(
|
||||
self, filepath_or_buffer: FilePath | ReadBuffer[bytes], engine_kwargs
|
||||
) -> OpenDocument:
|
||||
from odf.opendocument import load
|
||||
|
||||
return load(filepath_or_buffer, **engine_kwargs)
|
||||
|
||||
@property
|
||||
def empty_value(self) -> str:
|
||||
"""Property for compat with other readers."""
|
||||
return ""
|
||||
|
||||
@property
|
||||
def sheet_names(self) -> list[str]:
|
||||
"""Return a list of sheet names present in the document"""
|
||||
from odf.table import Table
|
||||
|
||||
tables = self.book.getElementsByType(Table)
|
||||
return [t.getAttribute("name") for t in tables]
|
||||
|
||||
def get_sheet_by_index(self, index: int):
|
||||
from odf.table import Table
|
||||
|
||||
self.raise_if_bad_sheet_by_index(index)
|
||||
tables = self.book.getElementsByType(Table)
|
||||
return tables[index]
|
||||
|
||||
def get_sheet_by_name(self, name: str):
|
||||
from odf.table import Table
|
||||
|
||||
self.raise_if_bad_sheet_by_name(name)
|
||||
tables = self.book.getElementsByType(Table)
|
||||
|
||||
for table in tables:
|
||||
if table.getAttribute("name") == name:
|
||||
return table
|
||||
|
||||
self.close()
|
||||
raise ValueError(f"sheet {name} not found")
|
||||
|
||||
def get_sheet_data(
|
||||
self, sheet, file_rows_needed: int | None = None
|
||||
) -> list[list[Scalar | NaTType]]:
|
||||
"""
|
||||
Parse an ODF Table into a list of lists
|
||||
"""
|
||||
from odf.table import (
|
||||
CoveredTableCell,
|
||||
TableCell,
|
||||
TableRow,
|
||||
)
|
||||
|
||||
covered_cell_name = CoveredTableCell().qname
|
||||
table_cell_name = TableCell().qname
|
||||
cell_names = {covered_cell_name, table_cell_name}
|
||||
|
||||
sheet_rows = sheet.getElementsByType(TableRow)
|
||||
empty_rows = 0
|
||||
max_row_len = 0
|
||||
|
||||
table: list[list[Scalar | NaTType]] = []
|
||||
|
||||
for sheet_row in sheet_rows:
|
||||
sheet_cells = [
|
||||
x
|
||||
for x in sheet_row.childNodes
|
||||
if hasattr(x, "qname") and x.qname in cell_names
|
||||
]
|
||||
empty_cells = 0
|
||||
table_row: list[Scalar | NaTType] = []
|
||||
|
||||
for sheet_cell in sheet_cells:
|
||||
if sheet_cell.qname == table_cell_name:
|
||||
value = self._get_cell_value(sheet_cell)
|
||||
else:
|
||||
value = self.empty_value
|
||||
|
||||
column_repeat = self._get_column_repeat(sheet_cell)
|
||||
|
||||
# Queue up empty values, writing only if content succeeds them
|
||||
if value == self.empty_value:
|
||||
empty_cells += column_repeat
|
||||
else:
|
||||
table_row.extend([self.empty_value] * empty_cells)
|
||||
empty_cells = 0
|
||||
table_row.extend([value] * column_repeat)
|
||||
|
||||
if max_row_len < len(table_row):
|
||||
max_row_len = len(table_row)
|
||||
|
||||
row_repeat = self._get_row_repeat(sheet_row)
|
||||
if len(table_row) == 0:
|
||||
empty_rows += row_repeat
|
||||
else:
|
||||
# add blank rows to our table
|
||||
table.extend([[self.empty_value]] * empty_rows)
|
||||
empty_rows = 0
|
||||
table.extend(table_row for _ in range(row_repeat))
|
||||
if file_rows_needed is not None and len(table) >= file_rows_needed:
|
||||
break
|
||||
|
||||
# Make our table square
|
||||
for row in table:
|
||||
if len(row) < max_row_len:
|
||||
row.extend([self.empty_value] * (max_row_len - len(row)))
|
||||
|
||||
return table
|
||||
|
||||
def _get_row_repeat(self, row) -> int:
|
||||
"""
|
||||
Return number of times this row was repeated
|
||||
Repeating an empty row appeared to be a common way
|
||||
of representing sparse rows in the table.
|
||||
"""
|
||||
from odf.namespaces import TABLENS
|
||||
|
||||
return int(row.attributes.get((TABLENS, "number-rows-repeated"), 1))
|
||||
|
||||
def _get_column_repeat(self, cell) -> int:
|
||||
from odf.namespaces import TABLENS
|
||||
|
||||
return int(cell.attributes.get((TABLENS, "number-columns-repeated"), 1))
|
||||
|
||||
def _get_cell_value(self, cell) -> Scalar | NaTType:
|
||||
from odf.namespaces import OFFICENS
|
||||
|
||||
if str(cell) == "#N/A":
|
||||
return np.nan
|
||||
|
||||
cell_type = cell.attributes.get((OFFICENS, "value-type"))
|
||||
if cell_type == "boolean":
|
||||
if str(cell) == "TRUE":
|
||||
return True
|
||||
return False
|
||||
if cell_type is None:
|
||||
return self.empty_value
|
||||
elif cell_type == "float":
|
||||
# GH5394
|
||||
cell_value = float(cell.attributes.get((OFFICENS, "value")))
|
||||
val = int(cell_value)
|
||||
if val == cell_value:
|
||||
return val
|
||||
return cell_value
|
||||
elif cell_type == "percentage":
|
||||
cell_value = cell.attributes.get((OFFICENS, "value"))
|
||||
return float(cell_value)
|
||||
elif cell_type == "string":
|
||||
return self._get_cell_string_value(cell)
|
||||
elif cell_type == "currency":
|
||||
cell_value = cell.attributes.get((OFFICENS, "value"))
|
||||
return float(cell_value)
|
||||
elif cell_type == "date":
|
||||
cell_value = cell.attributes.get((OFFICENS, "date-value"))
|
||||
return pd.Timestamp(cell_value)
|
||||
elif cell_type == "time":
|
||||
stamp = pd.Timestamp(str(cell))
|
||||
# cast needed here because Scalar doesn't include datetime.time
|
||||
return cast(Scalar, stamp.time())
|
||||
else:
|
||||
self.close()
|
||||
raise ValueError(f"Unrecognized type {cell_type}")
|
||||
|
||||
def _get_cell_string_value(self, cell) -> str:
|
||||
"""
|
||||
Find and decode OpenDocument text:s tags that represent
|
||||
a run length encoded sequence of space characters.
|
||||
"""
|
||||
from odf.element import Element
|
||||
from odf.namespaces import TEXTNS
|
||||
from odf.office import Annotation
|
||||
from odf.text import S
|
||||
|
||||
office_annotation = Annotation().qname
|
||||
text_s = S().qname
|
||||
|
||||
value = []
|
||||
|
||||
for fragment in cell.childNodes:
|
||||
if isinstance(fragment, Element):
|
||||
if fragment.qname == text_s:
|
||||
spaces = int(fragment.attributes.get((TEXTNS, "c"), 1))
|
||||
value.append(" " * spaces)
|
||||
elif fragment.qname == office_annotation:
|
||||
continue
|
||||
else:
|
||||
# recursive impl needed in case of nested fragments
|
||||
# with multiple spaces
|
||||
# https://github.com/pandas-dev/pandas/pull/36175#discussion_r484639704
|
||||
value.append(self._get_cell_string_value(fragment))
|
||||
else:
|
||||
value.append(str(fragment).strip("\n"))
|
||||
return "".join(value)
|
357
venv/lib/python3.12/site-packages/pandas/io/excel/_odswriter.py
Normal file
357
venv/lib/python3.12/site-packages/pandas/io/excel/_odswriter.py
Normal file
@ -0,0 +1,357 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from collections import defaultdict
|
||||
import datetime
|
||||
import json
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
DefaultDict,
|
||||
cast,
|
||||
overload,
|
||||
)
|
||||
|
||||
from pandas.io.excel._base import ExcelWriter
|
||||
from pandas.io.excel._util import (
|
||||
combine_kwargs,
|
||||
validate_freeze_panes,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pandas._typing import (
|
||||
ExcelWriterIfSheetExists,
|
||||
FilePath,
|
||||
StorageOptions,
|
||||
WriteExcelBuffer,
|
||||
)
|
||||
|
||||
from pandas.io.formats.excel import ExcelCell
|
||||
|
||||
|
||||
class ODSWriter(ExcelWriter):
|
||||
_engine = "odf"
|
||||
_supported_extensions = (".ods",)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
path: FilePath | WriteExcelBuffer | ExcelWriter,
|
||||
engine: str | None = None,
|
||||
date_format: str | None = None,
|
||||
datetime_format=None,
|
||||
mode: str = "w",
|
||||
storage_options: StorageOptions | None = None,
|
||||
if_sheet_exists: ExcelWriterIfSheetExists | None = None,
|
||||
engine_kwargs: dict[str, Any] | None = None,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
from odf.opendocument import OpenDocumentSpreadsheet
|
||||
|
||||
if mode == "a":
|
||||
raise ValueError("Append mode is not supported with odf!")
|
||||
|
||||
engine_kwargs = combine_kwargs(engine_kwargs, kwargs)
|
||||
self._book = OpenDocumentSpreadsheet(**engine_kwargs)
|
||||
|
||||
super().__init__(
|
||||
path,
|
||||
mode=mode,
|
||||
storage_options=storage_options,
|
||||
if_sheet_exists=if_sheet_exists,
|
||||
engine_kwargs=engine_kwargs,
|
||||
)
|
||||
|
||||
self._style_dict: dict[str, str] = {}
|
||||
|
||||
@property
|
||||
def book(self):
|
||||
"""
|
||||
Book instance of class odf.opendocument.OpenDocumentSpreadsheet.
|
||||
|
||||
This attribute can be used to access engine-specific features.
|
||||
"""
|
||||
return self._book
|
||||
|
||||
@property
|
||||
def sheets(self) -> dict[str, Any]:
|
||||
"""Mapping of sheet names to sheet objects."""
|
||||
from odf.table import Table
|
||||
|
||||
result = {
|
||||
sheet.getAttribute("name"): sheet
|
||||
for sheet in self.book.getElementsByType(Table)
|
||||
}
|
||||
return result
|
||||
|
||||
def _save(self) -> None:
|
||||
"""
|
||||
Save workbook to disk.
|
||||
"""
|
||||
for sheet in self.sheets.values():
|
||||
self.book.spreadsheet.addElement(sheet)
|
||||
self.book.save(self._handles.handle)
|
||||
|
||||
def _write_cells(
|
||||
self,
|
||||
cells: list[ExcelCell],
|
||||
sheet_name: str | None = None,
|
||||
startrow: int = 0,
|
||||
startcol: int = 0,
|
||||
freeze_panes: tuple[int, int] | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Write the frame cells using odf
|
||||
"""
|
||||
from odf.table import (
|
||||
Table,
|
||||
TableCell,
|
||||
TableRow,
|
||||
)
|
||||
from odf.text import P
|
||||
|
||||
sheet_name = self._get_sheet_name(sheet_name)
|
||||
assert sheet_name is not None
|
||||
|
||||
if sheet_name in self.sheets:
|
||||
wks = self.sheets[sheet_name]
|
||||
else:
|
||||
wks = Table(name=sheet_name)
|
||||
self.book.spreadsheet.addElement(wks)
|
||||
|
||||
if validate_freeze_panes(freeze_panes):
|
||||
freeze_panes = cast(tuple[int, int], freeze_panes)
|
||||
self._create_freeze_panes(sheet_name, freeze_panes)
|
||||
|
||||
for _ in range(startrow):
|
||||
wks.addElement(TableRow())
|
||||
|
||||
rows: DefaultDict = defaultdict(TableRow)
|
||||
col_count: DefaultDict = defaultdict(int)
|
||||
|
||||
for cell in sorted(cells, key=lambda cell: (cell.row, cell.col)):
|
||||
# only add empty cells if the row is still empty
|
||||
if not col_count[cell.row]:
|
||||
for _ in range(startcol):
|
||||
rows[cell.row].addElement(TableCell())
|
||||
|
||||
# fill with empty cells if needed
|
||||
for _ in range(cell.col - col_count[cell.row]):
|
||||
rows[cell.row].addElement(TableCell())
|
||||
col_count[cell.row] += 1
|
||||
|
||||
pvalue, tc = self._make_table_cell(cell)
|
||||
rows[cell.row].addElement(tc)
|
||||
col_count[cell.row] += 1
|
||||
p = P(text=pvalue)
|
||||
tc.addElement(p)
|
||||
|
||||
# add all rows to the sheet
|
||||
if len(rows) > 0:
|
||||
for row_nr in range(max(rows.keys()) + 1):
|
||||
wks.addElement(rows[row_nr])
|
||||
|
||||
def _make_table_cell_attributes(self, cell) -> dict[str, int | str]:
|
||||
"""Convert cell attributes to OpenDocument attributes
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cell : ExcelCell
|
||||
Spreadsheet cell data
|
||||
|
||||
Returns
|
||||
-------
|
||||
attributes : Dict[str, Union[int, str]]
|
||||
Dictionary with attributes and attribute values
|
||||
"""
|
||||
attributes: dict[str, int | str] = {}
|
||||
style_name = self._process_style(cell.style)
|
||||
if style_name is not None:
|
||||
attributes["stylename"] = style_name
|
||||
if cell.mergestart is not None and cell.mergeend is not None:
|
||||
attributes["numberrowsspanned"] = max(1, cell.mergestart)
|
||||
attributes["numbercolumnsspanned"] = cell.mergeend
|
||||
return attributes
|
||||
|
||||
def _make_table_cell(self, cell) -> tuple[object, Any]:
|
||||
"""Convert cell data to an OpenDocument spreadsheet cell
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cell : ExcelCell
|
||||
Spreadsheet cell data
|
||||
|
||||
Returns
|
||||
-------
|
||||
pvalue, cell : Tuple[str, TableCell]
|
||||
Display value, Cell value
|
||||
"""
|
||||
from odf.table import TableCell
|
||||
|
||||
attributes = self._make_table_cell_attributes(cell)
|
||||
val, fmt = self._value_with_fmt(cell.val)
|
||||
pvalue = value = val
|
||||
if isinstance(val, bool):
|
||||
value = str(val).lower()
|
||||
pvalue = str(val).upper()
|
||||
return (
|
||||
pvalue,
|
||||
TableCell(
|
||||
valuetype="boolean",
|
||||
booleanvalue=value,
|
||||
attributes=attributes,
|
||||
),
|
||||
)
|
||||
elif isinstance(val, datetime.datetime):
|
||||
# Fast formatting
|
||||
value = val.isoformat()
|
||||
# Slow but locale-dependent
|
||||
pvalue = val.strftime("%c")
|
||||
return (
|
||||
pvalue,
|
||||
TableCell(valuetype="date", datevalue=value, attributes=attributes),
|
||||
)
|
||||
elif isinstance(val, datetime.date):
|
||||
# Fast formatting
|
||||
value = f"{val.year}-{val.month:02d}-{val.day:02d}"
|
||||
# Slow but locale-dependent
|
||||
pvalue = val.strftime("%x")
|
||||
return (
|
||||
pvalue,
|
||||
TableCell(valuetype="date", datevalue=value, attributes=attributes),
|
||||
)
|
||||
elif isinstance(val, str):
|
||||
return (
|
||||
pvalue,
|
||||
TableCell(
|
||||
valuetype="string",
|
||||
stringvalue=value,
|
||||
attributes=attributes,
|
||||
),
|
||||
)
|
||||
else:
|
||||
return (
|
||||
pvalue,
|
||||
TableCell(
|
||||
valuetype="float",
|
||||
value=value,
|
||||
attributes=attributes,
|
||||
),
|
||||
)
|
||||
|
||||
@overload
|
||||
def _process_style(self, style: dict[str, Any]) -> str:
|
||||
...
|
||||
|
||||
@overload
|
||||
def _process_style(self, style: None) -> None:
|
||||
...
|
||||
|
||||
def _process_style(self, style: dict[str, Any] | None) -> str | None:
|
||||
"""Convert a style dictionary to a OpenDocument style sheet
|
||||
|
||||
Parameters
|
||||
----------
|
||||
style : Dict
|
||||
Style dictionary
|
||||
|
||||
Returns
|
||||
-------
|
||||
style_key : str
|
||||
Unique style key for later reference in sheet
|
||||
"""
|
||||
from odf.style import (
|
||||
ParagraphProperties,
|
||||
Style,
|
||||
TableCellProperties,
|
||||
TextProperties,
|
||||
)
|
||||
|
||||
if style is None:
|
||||
return None
|
||||
style_key = json.dumps(style)
|
||||
if style_key in self._style_dict:
|
||||
return self._style_dict[style_key]
|
||||
name = f"pd{len(self._style_dict)+1}"
|
||||
self._style_dict[style_key] = name
|
||||
odf_style = Style(name=name, family="table-cell")
|
||||
if "font" in style:
|
||||
font = style["font"]
|
||||
if font.get("bold", False):
|
||||
odf_style.addElement(TextProperties(fontweight="bold"))
|
||||
if "borders" in style:
|
||||
borders = style["borders"]
|
||||
for side, thickness in borders.items():
|
||||
thickness_translation = {"thin": "0.75pt solid #000000"}
|
||||
odf_style.addElement(
|
||||
TableCellProperties(
|
||||
attributes={f"border{side}": thickness_translation[thickness]}
|
||||
)
|
||||
)
|
||||
if "alignment" in style:
|
||||
alignment = style["alignment"]
|
||||
horizontal = alignment.get("horizontal")
|
||||
if horizontal:
|
||||
odf_style.addElement(ParagraphProperties(textalign=horizontal))
|
||||
vertical = alignment.get("vertical")
|
||||
if vertical:
|
||||
odf_style.addElement(TableCellProperties(verticalalign=vertical))
|
||||
self.book.styles.addElement(odf_style)
|
||||
return name
|
||||
|
||||
def _create_freeze_panes(
|
||||
self, sheet_name: str, freeze_panes: tuple[int, int]
|
||||
) -> None:
|
||||
"""
|
||||
Create freeze panes in the sheet.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
sheet_name : str
|
||||
Name of the spreadsheet
|
||||
freeze_panes : tuple of (int, int)
|
||||
Freeze pane location x and y
|
||||
"""
|
||||
from odf.config import (
|
||||
ConfigItem,
|
||||
ConfigItemMapEntry,
|
||||
ConfigItemMapIndexed,
|
||||
ConfigItemMapNamed,
|
||||
ConfigItemSet,
|
||||
)
|
||||
|
||||
config_item_set = ConfigItemSet(name="ooo:view-settings")
|
||||
self.book.settings.addElement(config_item_set)
|
||||
|
||||
config_item_map_indexed = ConfigItemMapIndexed(name="Views")
|
||||
config_item_set.addElement(config_item_map_indexed)
|
||||
|
||||
config_item_map_entry = ConfigItemMapEntry()
|
||||
config_item_map_indexed.addElement(config_item_map_entry)
|
||||
|
||||
config_item_map_named = ConfigItemMapNamed(name="Tables")
|
||||
config_item_map_entry.addElement(config_item_map_named)
|
||||
|
||||
config_item_map_entry = ConfigItemMapEntry(name=sheet_name)
|
||||
config_item_map_named.addElement(config_item_map_entry)
|
||||
|
||||
config_item_map_entry.addElement(
|
||||
ConfigItem(name="HorizontalSplitMode", type="short", text="2")
|
||||
)
|
||||
config_item_map_entry.addElement(
|
||||
ConfigItem(name="VerticalSplitMode", type="short", text="2")
|
||||
)
|
||||
config_item_map_entry.addElement(
|
||||
ConfigItem(
|
||||
name="HorizontalSplitPosition", type="int", text=str(freeze_panes[0])
|
||||
)
|
||||
)
|
||||
config_item_map_entry.addElement(
|
||||
ConfigItem(
|
||||
name="VerticalSplitPosition", type="int", text=str(freeze_panes[1])
|
||||
)
|
||||
)
|
||||
config_item_map_entry.addElement(
|
||||
ConfigItem(name="PositionRight", type="int", text=str(freeze_panes[0]))
|
||||
)
|
||||
config_item_map_entry.addElement(
|
||||
ConfigItem(name="PositionBottom", type="int", text=str(freeze_panes[1]))
|
||||
)
|
639
venv/lib/python3.12/site-packages/pandas/io/excel/_openpyxl.py
Normal file
639
venv/lib/python3.12/site-packages/pandas/io/excel/_openpyxl.py
Normal file
@ -0,0 +1,639 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import mmap
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
cast,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas.compat._optional import import_optional_dependency
|
||||
from pandas.util._decorators import doc
|
||||
|
||||
from pandas.core.shared_docs import _shared_docs
|
||||
|
||||
from pandas.io.excel._base import (
|
||||
BaseExcelReader,
|
||||
ExcelWriter,
|
||||
)
|
||||
from pandas.io.excel._util import (
|
||||
combine_kwargs,
|
||||
validate_freeze_panes,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from openpyxl import Workbook
|
||||
from openpyxl.descriptors.serialisable import Serialisable
|
||||
|
||||
from pandas._typing import (
|
||||
ExcelWriterIfSheetExists,
|
||||
FilePath,
|
||||
ReadBuffer,
|
||||
Scalar,
|
||||
StorageOptions,
|
||||
WriteExcelBuffer,
|
||||
)
|
||||
|
||||
|
||||
class OpenpyxlWriter(ExcelWriter):
|
||||
_engine = "openpyxl"
|
||||
_supported_extensions = (".xlsx", ".xlsm")
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
path: FilePath | WriteExcelBuffer | ExcelWriter,
|
||||
engine: str | None = None,
|
||||
date_format: str | None = None,
|
||||
datetime_format: str | None = None,
|
||||
mode: str = "w",
|
||||
storage_options: StorageOptions | None = None,
|
||||
if_sheet_exists: ExcelWriterIfSheetExists | None = None,
|
||||
engine_kwargs: dict[str, Any] | None = None,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
# Use the openpyxl module as the Excel writer.
|
||||
from openpyxl.workbook import Workbook
|
||||
|
||||
engine_kwargs = combine_kwargs(engine_kwargs, kwargs)
|
||||
|
||||
super().__init__(
|
||||
path,
|
||||
mode=mode,
|
||||
storage_options=storage_options,
|
||||
if_sheet_exists=if_sheet_exists,
|
||||
engine_kwargs=engine_kwargs,
|
||||
)
|
||||
|
||||
# ExcelWriter replaced "a" by "r+" to allow us to first read the excel file from
|
||||
# the file and later write to it
|
||||
if "r+" in self._mode: # Load from existing workbook
|
||||
from openpyxl import load_workbook
|
||||
|
||||
try:
|
||||
self._book = load_workbook(self._handles.handle, **engine_kwargs)
|
||||
except TypeError:
|
||||
self._handles.handle.close()
|
||||
raise
|
||||
self._handles.handle.seek(0)
|
||||
else:
|
||||
# Create workbook object with default optimized_write=True.
|
||||
try:
|
||||
self._book = Workbook(**engine_kwargs)
|
||||
except TypeError:
|
||||
self._handles.handle.close()
|
||||
raise
|
||||
|
||||
if self.book.worksheets:
|
||||
self.book.remove(self.book.worksheets[0])
|
||||
|
||||
@property
|
||||
def book(self) -> Workbook:
|
||||
"""
|
||||
Book instance of class openpyxl.workbook.Workbook.
|
||||
|
||||
This attribute can be used to access engine-specific features.
|
||||
"""
|
||||
return self._book
|
||||
|
||||
@property
|
||||
def sheets(self) -> dict[str, Any]:
|
||||
"""Mapping of sheet names to sheet objects."""
|
||||
result = {name: self.book[name] for name in self.book.sheetnames}
|
||||
return result
|
||||
|
||||
def _save(self) -> None:
|
||||
"""
|
||||
Save workbook to disk.
|
||||
"""
|
||||
self.book.save(self._handles.handle)
|
||||
if "r+" in self._mode and not isinstance(self._handles.handle, mmap.mmap):
|
||||
# truncate file to the written content
|
||||
self._handles.handle.truncate()
|
||||
|
||||
@classmethod
|
||||
def _convert_to_style_kwargs(cls, style_dict: dict) -> dict[str, Serialisable]:
|
||||
"""
|
||||
Convert a style_dict to a set of kwargs suitable for initializing
|
||||
or updating-on-copy an openpyxl v2 style object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
style_dict : dict
|
||||
A dict with zero or more of the following keys (or their synonyms).
|
||||
'font'
|
||||
'fill'
|
||||
'border' ('borders')
|
||||
'alignment'
|
||||
'number_format'
|
||||
'protection'
|
||||
|
||||
Returns
|
||||
-------
|
||||
style_kwargs : dict
|
||||
A dict with the same, normalized keys as ``style_dict`` but each
|
||||
value has been replaced with a native openpyxl style object of the
|
||||
appropriate class.
|
||||
"""
|
||||
_style_key_map = {"borders": "border"}
|
||||
|
||||
style_kwargs: dict[str, Serialisable] = {}
|
||||
for k, v in style_dict.items():
|
||||
k = _style_key_map.get(k, k)
|
||||
_conv_to_x = getattr(cls, f"_convert_to_{k}", lambda x: None)
|
||||
new_v = _conv_to_x(v)
|
||||
if new_v:
|
||||
style_kwargs[k] = new_v
|
||||
|
||||
return style_kwargs
|
||||
|
||||
@classmethod
|
||||
def _convert_to_color(cls, color_spec):
|
||||
"""
|
||||
Convert ``color_spec`` to an openpyxl v2 Color object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
color_spec : str, dict
|
||||
A 32-bit ARGB hex string, or a dict with zero or more of the
|
||||
following keys.
|
||||
'rgb'
|
||||
'indexed'
|
||||
'auto'
|
||||
'theme'
|
||||
'tint'
|
||||
'index'
|
||||
'type'
|
||||
|
||||
Returns
|
||||
-------
|
||||
color : openpyxl.styles.Color
|
||||
"""
|
||||
from openpyxl.styles import Color
|
||||
|
||||
if isinstance(color_spec, str):
|
||||
return Color(color_spec)
|
||||
else:
|
||||
return Color(**color_spec)
|
||||
|
||||
@classmethod
|
||||
def _convert_to_font(cls, font_dict):
|
||||
"""
|
||||
Convert ``font_dict`` to an openpyxl v2 Font object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
font_dict : dict
|
||||
A dict with zero or more of the following keys (or their synonyms).
|
||||
'name'
|
||||
'size' ('sz')
|
||||
'bold' ('b')
|
||||
'italic' ('i')
|
||||
'underline' ('u')
|
||||
'strikethrough' ('strike')
|
||||
'color'
|
||||
'vertAlign' ('vertalign')
|
||||
'charset'
|
||||
'scheme'
|
||||
'family'
|
||||
'outline'
|
||||
'shadow'
|
||||
'condense'
|
||||
|
||||
Returns
|
||||
-------
|
||||
font : openpyxl.styles.Font
|
||||
"""
|
||||
from openpyxl.styles import Font
|
||||
|
||||
_font_key_map = {
|
||||
"sz": "size",
|
||||
"b": "bold",
|
||||
"i": "italic",
|
||||
"u": "underline",
|
||||
"strike": "strikethrough",
|
||||
"vertalign": "vertAlign",
|
||||
}
|
||||
|
||||
font_kwargs = {}
|
||||
for k, v in font_dict.items():
|
||||
k = _font_key_map.get(k, k)
|
||||
if k == "color":
|
||||
v = cls._convert_to_color(v)
|
||||
font_kwargs[k] = v
|
||||
|
||||
return Font(**font_kwargs)
|
||||
|
||||
@classmethod
|
||||
def _convert_to_stop(cls, stop_seq):
|
||||
"""
|
||||
Convert ``stop_seq`` to a list of openpyxl v2 Color objects,
|
||||
suitable for initializing the ``GradientFill`` ``stop`` parameter.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
stop_seq : iterable
|
||||
An iterable that yields objects suitable for consumption by
|
||||
``_convert_to_color``.
|
||||
|
||||
Returns
|
||||
-------
|
||||
stop : list of openpyxl.styles.Color
|
||||
"""
|
||||
return map(cls._convert_to_color, stop_seq)
|
||||
|
||||
@classmethod
|
||||
def _convert_to_fill(cls, fill_dict: dict[str, Any]):
|
||||
"""
|
||||
Convert ``fill_dict`` to an openpyxl v2 Fill object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fill_dict : dict
|
||||
A dict with one or more of the following keys (or their synonyms),
|
||||
'fill_type' ('patternType', 'patterntype')
|
||||
'start_color' ('fgColor', 'fgcolor')
|
||||
'end_color' ('bgColor', 'bgcolor')
|
||||
or one or more of the following keys (or their synonyms).
|
||||
'type' ('fill_type')
|
||||
'degree'
|
||||
'left'
|
||||
'right'
|
||||
'top'
|
||||
'bottom'
|
||||
'stop'
|
||||
|
||||
Returns
|
||||
-------
|
||||
fill : openpyxl.styles.Fill
|
||||
"""
|
||||
from openpyxl.styles import (
|
||||
GradientFill,
|
||||
PatternFill,
|
||||
)
|
||||
|
||||
_pattern_fill_key_map = {
|
||||
"patternType": "fill_type",
|
||||
"patterntype": "fill_type",
|
||||
"fgColor": "start_color",
|
||||
"fgcolor": "start_color",
|
||||
"bgColor": "end_color",
|
||||
"bgcolor": "end_color",
|
||||
}
|
||||
|
||||
_gradient_fill_key_map = {"fill_type": "type"}
|
||||
|
||||
pfill_kwargs = {}
|
||||
gfill_kwargs = {}
|
||||
for k, v in fill_dict.items():
|
||||
pk = _pattern_fill_key_map.get(k)
|
||||
gk = _gradient_fill_key_map.get(k)
|
||||
if pk in ["start_color", "end_color"]:
|
||||
v = cls._convert_to_color(v)
|
||||
if gk == "stop":
|
||||
v = cls._convert_to_stop(v)
|
||||
if pk:
|
||||
pfill_kwargs[pk] = v
|
||||
elif gk:
|
||||
gfill_kwargs[gk] = v
|
||||
else:
|
||||
pfill_kwargs[k] = v
|
||||
gfill_kwargs[k] = v
|
||||
|
||||
try:
|
||||
return PatternFill(**pfill_kwargs)
|
||||
except TypeError:
|
||||
return GradientFill(**gfill_kwargs)
|
||||
|
||||
@classmethod
|
||||
def _convert_to_side(cls, side_spec):
|
||||
"""
|
||||
Convert ``side_spec`` to an openpyxl v2 Side object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
side_spec : str, dict
|
||||
A string specifying the border style, or a dict with zero or more
|
||||
of the following keys (or their synonyms).
|
||||
'style' ('border_style')
|
||||
'color'
|
||||
|
||||
Returns
|
||||
-------
|
||||
side : openpyxl.styles.Side
|
||||
"""
|
||||
from openpyxl.styles import Side
|
||||
|
||||
_side_key_map = {"border_style": "style"}
|
||||
|
||||
if isinstance(side_spec, str):
|
||||
return Side(style=side_spec)
|
||||
|
||||
side_kwargs = {}
|
||||
for k, v in side_spec.items():
|
||||
k = _side_key_map.get(k, k)
|
||||
if k == "color":
|
||||
v = cls._convert_to_color(v)
|
||||
side_kwargs[k] = v
|
||||
|
||||
return Side(**side_kwargs)
|
||||
|
||||
@classmethod
|
||||
def _convert_to_border(cls, border_dict):
|
||||
"""
|
||||
Convert ``border_dict`` to an openpyxl v2 Border object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
border_dict : dict
|
||||
A dict with zero or more of the following keys (or their synonyms).
|
||||
'left'
|
||||
'right'
|
||||
'top'
|
||||
'bottom'
|
||||
'diagonal'
|
||||
'diagonal_direction'
|
||||
'vertical'
|
||||
'horizontal'
|
||||
'diagonalUp' ('diagonalup')
|
||||
'diagonalDown' ('diagonaldown')
|
||||
'outline'
|
||||
|
||||
Returns
|
||||
-------
|
||||
border : openpyxl.styles.Border
|
||||
"""
|
||||
from openpyxl.styles import Border
|
||||
|
||||
_border_key_map = {"diagonalup": "diagonalUp", "diagonaldown": "diagonalDown"}
|
||||
|
||||
border_kwargs = {}
|
||||
for k, v in border_dict.items():
|
||||
k = _border_key_map.get(k, k)
|
||||
if k == "color":
|
||||
v = cls._convert_to_color(v)
|
||||
if k in ["left", "right", "top", "bottom", "diagonal"]:
|
||||
v = cls._convert_to_side(v)
|
||||
border_kwargs[k] = v
|
||||
|
||||
return Border(**border_kwargs)
|
||||
|
||||
@classmethod
|
||||
def _convert_to_alignment(cls, alignment_dict):
|
||||
"""
|
||||
Convert ``alignment_dict`` to an openpyxl v2 Alignment object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
alignment_dict : dict
|
||||
A dict with zero or more of the following keys (or their synonyms).
|
||||
'horizontal'
|
||||
'vertical'
|
||||
'text_rotation'
|
||||
'wrap_text'
|
||||
'shrink_to_fit'
|
||||
'indent'
|
||||
Returns
|
||||
-------
|
||||
alignment : openpyxl.styles.Alignment
|
||||
"""
|
||||
from openpyxl.styles import Alignment
|
||||
|
||||
return Alignment(**alignment_dict)
|
||||
|
||||
@classmethod
|
||||
def _convert_to_number_format(cls, number_format_dict):
|
||||
"""
|
||||
Convert ``number_format_dict`` to an openpyxl v2.1.0 number format
|
||||
initializer.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
number_format_dict : dict
|
||||
A dict with zero or more of the following keys.
|
||||
'format_code' : str
|
||||
|
||||
Returns
|
||||
-------
|
||||
number_format : str
|
||||
"""
|
||||
return number_format_dict["format_code"]
|
||||
|
||||
@classmethod
|
||||
def _convert_to_protection(cls, protection_dict):
|
||||
"""
|
||||
Convert ``protection_dict`` to an openpyxl v2 Protection object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
protection_dict : dict
|
||||
A dict with zero or more of the following keys.
|
||||
'locked'
|
||||
'hidden'
|
||||
|
||||
Returns
|
||||
-------
|
||||
"""
|
||||
from openpyxl.styles import Protection
|
||||
|
||||
return Protection(**protection_dict)
|
||||
|
||||
def _write_cells(
|
||||
self,
|
||||
cells,
|
||||
sheet_name: str | None = None,
|
||||
startrow: int = 0,
|
||||
startcol: int = 0,
|
||||
freeze_panes: tuple[int, int] | None = None,
|
||||
) -> None:
|
||||
# Write the frame cells using openpyxl.
|
||||
sheet_name = self._get_sheet_name(sheet_name)
|
||||
|
||||
_style_cache: dict[str, dict[str, Serialisable]] = {}
|
||||
|
||||
if sheet_name in self.sheets and self._if_sheet_exists != "new":
|
||||
if "r+" in self._mode:
|
||||
if self._if_sheet_exists == "replace":
|
||||
old_wks = self.sheets[sheet_name]
|
||||
target_index = self.book.index(old_wks)
|
||||
del self.book[sheet_name]
|
||||
wks = self.book.create_sheet(sheet_name, target_index)
|
||||
elif self._if_sheet_exists == "error":
|
||||
raise ValueError(
|
||||
f"Sheet '{sheet_name}' already exists and "
|
||||
f"if_sheet_exists is set to 'error'."
|
||||
)
|
||||
elif self._if_sheet_exists == "overlay":
|
||||
wks = self.sheets[sheet_name]
|
||||
else:
|
||||
raise ValueError(
|
||||
f"'{self._if_sheet_exists}' is not valid for if_sheet_exists. "
|
||||
"Valid options are 'error', 'new', 'replace' and 'overlay'."
|
||||
)
|
||||
else:
|
||||
wks = self.sheets[sheet_name]
|
||||
else:
|
||||
wks = self.book.create_sheet()
|
||||
wks.title = sheet_name
|
||||
|
||||
if validate_freeze_panes(freeze_panes):
|
||||
freeze_panes = cast(tuple[int, int], freeze_panes)
|
||||
wks.freeze_panes = wks.cell(
|
||||
row=freeze_panes[0] + 1, column=freeze_panes[1] + 1
|
||||
)
|
||||
|
||||
for cell in cells:
|
||||
xcell = wks.cell(
|
||||
row=startrow + cell.row + 1, column=startcol + cell.col + 1
|
||||
)
|
||||
xcell.value, fmt = self._value_with_fmt(cell.val)
|
||||
if fmt:
|
||||
xcell.number_format = fmt
|
||||
|
||||
style_kwargs: dict[str, Serialisable] | None = {}
|
||||
if cell.style:
|
||||
key = str(cell.style)
|
||||
style_kwargs = _style_cache.get(key)
|
||||
if style_kwargs is None:
|
||||
style_kwargs = self._convert_to_style_kwargs(cell.style)
|
||||
_style_cache[key] = style_kwargs
|
||||
|
||||
if style_kwargs:
|
||||
for k, v in style_kwargs.items():
|
||||
setattr(xcell, k, v)
|
||||
|
||||
if cell.mergestart is not None and cell.mergeend is not None:
|
||||
wks.merge_cells(
|
||||
start_row=startrow + cell.row + 1,
|
||||
start_column=startcol + cell.col + 1,
|
||||
end_column=startcol + cell.mergeend + 1,
|
||||
end_row=startrow + cell.mergestart + 1,
|
||||
)
|
||||
|
||||
# When cells are merged only the top-left cell is preserved
|
||||
# The behaviour of the other cells in a merged range is
|
||||
# undefined
|
||||
if style_kwargs:
|
||||
first_row = startrow + cell.row + 1
|
||||
last_row = startrow + cell.mergestart + 1
|
||||
first_col = startcol + cell.col + 1
|
||||
last_col = startcol + cell.mergeend + 1
|
||||
|
||||
for row in range(first_row, last_row + 1):
|
||||
for col in range(first_col, last_col + 1):
|
||||
if row == first_row and col == first_col:
|
||||
# Ignore first cell. It is already handled.
|
||||
continue
|
||||
xcell = wks.cell(column=col, row=row)
|
||||
for k, v in style_kwargs.items():
|
||||
setattr(xcell, k, v)
|
||||
|
||||
|
||||
class OpenpyxlReader(BaseExcelReader["Workbook"]):
|
||||
@doc(storage_options=_shared_docs["storage_options"])
|
||||
def __init__(
|
||||
self,
|
||||
filepath_or_buffer: FilePath | ReadBuffer[bytes],
|
||||
storage_options: StorageOptions | None = None,
|
||||
engine_kwargs: dict | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Reader using openpyxl engine.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
filepath_or_buffer : str, path object or Workbook
|
||||
Object to be parsed.
|
||||
{storage_options}
|
||||
engine_kwargs : dict, optional
|
||||
Arbitrary keyword arguments passed to excel engine.
|
||||
"""
|
||||
import_optional_dependency("openpyxl")
|
||||
super().__init__(
|
||||
filepath_or_buffer,
|
||||
storage_options=storage_options,
|
||||
engine_kwargs=engine_kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def _workbook_class(self) -> type[Workbook]:
|
||||
from openpyxl import Workbook
|
||||
|
||||
return Workbook
|
||||
|
||||
def load_workbook(
|
||||
self, filepath_or_buffer: FilePath | ReadBuffer[bytes], engine_kwargs
|
||||
) -> Workbook:
|
||||
from openpyxl import load_workbook
|
||||
|
||||
default_kwargs = {"read_only": True, "data_only": True, "keep_links": False}
|
||||
|
||||
return load_workbook(
|
||||
filepath_or_buffer,
|
||||
**(default_kwargs | engine_kwargs),
|
||||
)
|
||||
|
||||
@property
|
||||
def sheet_names(self) -> list[str]:
|
||||
return [sheet.title for sheet in self.book.worksheets]
|
||||
|
||||
def get_sheet_by_name(self, name: str):
|
||||
self.raise_if_bad_sheet_by_name(name)
|
||||
return self.book[name]
|
||||
|
||||
def get_sheet_by_index(self, index: int):
|
||||
self.raise_if_bad_sheet_by_index(index)
|
||||
return self.book.worksheets[index]
|
||||
|
||||
def _convert_cell(self, cell) -> Scalar:
|
||||
from openpyxl.cell.cell import (
|
||||
TYPE_ERROR,
|
||||
TYPE_NUMERIC,
|
||||
)
|
||||
|
||||
if cell.value is None:
|
||||
return "" # compat with xlrd
|
||||
elif cell.data_type == TYPE_ERROR:
|
||||
return np.nan
|
||||
elif cell.data_type == TYPE_NUMERIC:
|
||||
val = int(cell.value)
|
||||
if val == cell.value:
|
||||
return val
|
||||
return float(cell.value)
|
||||
|
||||
return cell.value
|
||||
|
||||
def get_sheet_data(
|
||||
self, sheet, file_rows_needed: int | None = None
|
||||
) -> list[list[Scalar]]:
|
||||
if self.book.read_only:
|
||||
sheet.reset_dimensions()
|
||||
|
||||
data: list[list[Scalar]] = []
|
||||
last_row_with_data = -1
|
||||
for row_number, row in enumerate(sheet.rows):
|
||||
converted_row = [self._convert_cell(cell) for cell in row]
|
||||
while converted_row and converted_row[-1] == "":
|
||||
# trim trailing empty elements
|
||||
converted_row.pop()
|
||||
if converted_row:
|
||||
last_row_with_data = row_number
|
||||
data.append(converted_row)
|
||||
if file_rows_needed is not None and len(data) >= file_rows_needed:
|
||||
break
|
||||
|
||||
# Trim trailing empty rows
|
||||
data = data[: last_row_with_data + 1]
|
||||
|
||||
if len(data) > 0:
|
||||
# extend rows to max width
|
||||
max_width = max(len(data_row) for data_row in data)
|
||||
if min(len(data_row) for data_row in data) < max_width:
|
||||
empty_cell: list[Scalar] = [""]
|
||||
data = [
|
||||
data_row + (max_width - len(data_row)) * empty_cell
|
||||
for data_row in data
|
||||
]
|
||||
|
||||
return data
|
127
venv/lib/python3.12/site-packages/pandas/io/excel/_pyxlsb.py
Normal file
127
venv/lib/python3.12/site-packages/pandas/io/excel/_pyxlsb.py
Normal file
@ -0,0 +1,127 @@
|
||||
# pyright: reportMissingImports=false
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from pandas.compat._optional import import_optional_dependency
|
||||
from pandas.util._decorators import doc
|
||||
|
||||
from pandas.core.shared_docs import _shared_docs
|
||||
|
||||
from pandas.io.excel._base import BaseExcelReader
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pyxlsb import Workbook
|
||||
|
||||
from pandas._typing import (
|
||||
FilePath,
|
||||
ReadBuffer,
|
||||
Scalar,
|
||||
StorageOptions,
|
||||
)
|
||||
|
||||
|
||||
class PyxlsbReader(BaseExcelReader["Workbook"]):
|
||||
@doc(storage_options=_shared_docs["storage_options"])
|
||||
def __init__(
|
||||
self,
|
||||
filepath_or_buffer: FilePath | ReadBuffer[bytes],
|
||||
storage_options: StorageOptions | None = None,
|
||||
engine_kwargs: dict | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Reader using pyxlsb engine.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
filepath_or_buffer : str, path object, or Workbook
|
||||
Object to be parsed.
|
||||
{storage_options}
|
||||
engine_kwargs : dict, optional
|
||||
Arbitrary keyword arguments passed to excel engine.
|
||||
"""
|
||||
import_optional_dependency("pyxlsb")
|
||||
# This will call load_workbook on the filepath or buffer
|
||||
# And set the result to the book-attribute
|
||||
super().__init__(
|
||||
filepath_or_buffer,
|
||||
storage_options=storage_options,
|
||||
engine_kwargs=engine_kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def _workbook_class(self) -> type[Workbook]:
|
||||
from pyxlsb import Workbook
|
||||
|
||||
return Workbook
|
||||
|
||||
def load_workbook(
|
||||
self, filepath_or_buffer: FilePath | ReadBuffer[bytes], engine_kwargs
|
||||
) -> Workbook:
|
||||
from pyxlsb import open_workbook
|
||||
|
||||
# TODO: hack in buffer capability
|
||||
# This might need some modifications to the Pyxlsb library
|
||||
# Actual work for opening it is in xlsbpackage.py, line 20-ish
|
||||
|
||||
return open_workbook(filepath_or_buffer, **engine_kwargs)
|
||||
|
||||
@property
|
||||
def sheet_names(self) -> list[str]:
|
||||
return self.book.sheets
|
||||
|
||||
def get_sheet_by_name(self, name: str):
|
||||
self.raise_if_bad_sheet_by_name(name)
|
||||
return self.book.get_sheet(name)
|
||||
|
||||
def get_sheet_by_index(self, index: int):
|
||||
self.raise_if_bad_sheet_by_index(index)
|
||||
# pyxlsb sheets are indexed from 1 onwards
|
||||
# There's a fix for this in the source, but the pypi package doesn't have it
|
||||
return self.book.get_sheet(index + 1)
|
||||
|
||||
def _convert_cell(self, cell) -> Scalar:
|
||||
# TODO: there is no way to distinguish between floats and datetimes in pyxlsb
|
||||
# This means that there is no way to read datetime types from an xlsb file yet
|
||||
if cell.v is None:
|
||||
return "" # Prevents non-named columns from not showing up as Unnamed: i
|
||||
if isinstance(cell.v, float):
|
||||
val = int(cell.v)
|
||||
if val == cell.v:
|
||||
return val
|
||||
else:
|
||||
return float(cell.v)
|
||||
|
||||
return cell.v
|
||||
|
||||
def get_sheet_data(
|
||||
self,
|
||||
sheet,
|
||||
file_rows_needed: int | None = None,
|
||||
) -> list[list[Scalar]]:
|
||||
data: list[list[Scalar]] = []
|
||||
previous_row_number = -1
|
||||
# When sparse=True the rows can have different lengths and empty rows are
|
||||
# not returned. The cells are namedtuples of row, col, value (r, c, v).
|
||||
for row in sheet.rows(sparse=True):
|
||||
row_number = row[0].r
|
||||
converted_row = [self._convert_cell(cell) for cell in row]
|
||||
while converted_row and converted_row[-1] == "":
|
||||
# trim trailing empty elements
|
||||
converted_row.pop()
|
||||
if converted_row:
|
||||
data.extend([[]] * (row_number - previous_row_number - 1))
|
||||
data.append(converted_row)
|
||||
previous_row_number = row_number
|
||||
if file_rows_needed is not None and len(data) >= file_rows_needed:
|
||||
break
|
||||
if data:
|
||||
# extend rows to max_width
|
||||
max_width = max(len(data_row) for data_row in data)
|
||||
if min(len(data_row) for data_row in data) < max_width:
|
||||
empty_cell: list[Scalar] = [""]
|
||||
data = [
|
||||
data_row + (max_width - len(data_row)) * empty_cell
|
||||
for data_row in data
|
||||
]
|
||||
return data
|
334
venv/lib/python3.12/site-packages/pandas/io/excel/_util.py
Normal file
334
venv/lib/python3.12/site-packages/pandas/io/excel/_util.py
Normal file
@ -0,0 +1,334 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import (
|
||||
Hashable,
|
||||
Iterable,
|
||||
MutableMapping,
|
||||
Sequence,
|
||||
)
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Callable,
|
||||
Literal,
|
||||
TypeVar,
|
||||
overload,
|
||||
)
|
||||
|
||||
from pandas.compat._optional import import_optional_dependency
|
||||
|
||||
from pandas.core.dtypes.common import (
|
||||
is_integer,
|
||||
is_list_like,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pandas.io.excel._base import ExcelWriter
|
||||
|
||||
ExcelWriter_t = type[ExcelWriter]
|
||||
usecols_func = TypeVar("usecols_func", bound=Callable[[Hashable], object])
|
||||
|
||||
_writers: MutableMapping[str, ExcelWriter_t] = {}
|
||||
|
||||
|
||||
def register_writer(klass: ExcelWriter_t) -> None:
|
||||
"""
|
||||
Add engine to the excel writer registry.io.excel.
|
||||
|
||||
You must use this method to integrate with ``to_excel``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
klass : ExcelWriter
|
||||
"""
|
||||
if not callable(klass):
|
||||
raise ValueError("Can only register callables as engines")
|
||||
engine_name = klass._engine
|
||||
_writers[engine_name] = klass
|
||||
|
||||
|
||||
def get_default_engine(ext: str, mode: Literal["reader", "writer"] = "reader") -> str:
|
||||
"""
|
||||
Return the default reader/writer for the given extension.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ext : str
|
||||
The excel file extension for which to get the default engine.
|
||||
mode : str {'reader', 'writer'}
|
||||
Whether to get the default engine for reading or writing.
|
||||
Either 'reader' or 'writer'
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
The default engine for the extension.
|
||||
"""
|
||||
_default_readers = {
|
||||
"xlsx": "openpyxl",
|
||||
"xlsm": "openpyxl",
|
||||
"xlsb": "pyxlsb",
|
||||
"xls": "xlrd",
|
||||
"ods": "odf",
|
||||
}
|
||||
_default_writers = {
|
||||
"xlsx": "openpyxl",
|
||||
"xlsm": "openpyxl",
|
||||
"xlsb": "pyxlsb",
|
||||
"ods": "odf",
|
||||
}
|
||||
assert mode in ["reader", "writer"]
|
||||
if mode == "writer":
|
||||
# Prefer xlsxwriter over openpyxl if installed
|
||||
xlsxwriter = import_optional_dependency("xlsxwriter", errors="warn")
|
||||
if xlsxwriter:
|
||||
_default_writers["xlsx"] = "xlsxwriter"
|
||||
return _default_writers[ext]
|
||||
else:
|
||||
return _default_readers[ext]
|
||||
|
||||
|
||||
def get_writer(engine_name: str) -> ExcelWriter_t:
|
||||
try:
|
||||
return _writers[engine_name]
|
||||
except KeyError as err:
|
||||
raise ValueError(f"No Excel writer '{engine_name}'") from err
|
||||
|
||||
|
||||
def _excel2num(x: str) -> int:
|
||||
"""
|
||||
Convert Excel column name like 'AB' to 0-based column index.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : str
|
||||
The Excel column name to convert to a 0-based column index.
|
||||
|
||||
Returns
|
||||
-------
|
||||
num : int
|
||||
The column index corresponding to the name.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
Part of the Excel column name was invalid.
|
||||
"""
|
||||
index = 0
|
||||
|
||||
for c in x.upper().strip():
|
||||
cp = ord(c)
|
||||
|
||||
if cp < ord("A") or cp > ord("Z"):
|
||||
raise ValueError(f"Invalid column name: {x}")
|
||||
|
||||
index = index * 26 + cp - ord("A") + 1
|
||||
|
||||
return index - 1
|
||||
|
||||
|
||||
def _range2cols(areas: str) -> list[int]:
|
||||
"""
|
||||
Convert comma separated list of column names and ranges to indices.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
areas : str
|
||||
A string containing a sequence of column ranges (or areas).
|
||||
|
||||
Returns
|
||||
-------
|
||||
cols : list
|
||||
A list of 0-based column indices.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> _range2cols('A:E')
|
||||
[0, 1, 2, 3, 4]
|
||||
>>> _range2cols('A,C,Z:AB')
|
||||
[0, 2, 25, 26, 27]
|
||||
"""
|
||||
cols: list[int] = []
|
||||
|
||||
for rng in areas.split(","):
|
||||
if ":" in rng:
|
||||
rngs = rng.split(":")
|
||||
cols.extend(range(_excel2num(rngs[0]), _excel2num(rngs[1]) + 1))
|
||||
else:
|
||||
cols.append(_excel2num(rng))
|
||||
|
||||
return cols
|
||||
|
||||
|
||||
@overload
|
||||
def maybe_convert_usecols(usecols: str | list[int]) -> list[int]:
|
||||
...
|
||||
|
||||
|
||||
@overload
|
||||
def maybe_convert_usecols(usecols: list[str]) -> list[str]:
|
||||
...
|
||||
|
||||
|
||||
@overload
|
||||
def maybe_convert_usecols(usecols: usecols_func) -> usecols_func:
|
||||
...
|
||||
|
||||
|
||||
@overload
|
||||
def maybe_convert_usecols(usecols: None) -> None:
|
||||
...
|
||||
|
||||
|
||||
def maybe_convert_usecols(
|
||||
usecols: str | list[int] | list[str] | usecols_func | None,
|
||||
) -> None | list[int] | list[str] | usecols_func:
|
||||
"""
|
||||
Convert `usecols` into a compatible format for parsing in `parsers.py`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
usecols : object
|
||||
The use-columns object to potentially convert.
|
||||
|
||||
Returns
|
||||
-------
|
||||
converted : object
|
||||
The compatible format of `usecols`.
|
||||
"""
|
||||
if usecols is None:
|
||||
return usecols
|
||||
|
||||
if is_integer(usecols):
|
||||
raise ValueError(
|
||||
"Passing an integer for `usecols` is no longer supported. "
|
||||
"Please pass in a list of int from 0 to `usecols` inclusive instead."
|
||||
)
|
||||
|
||||
if isinstance(usecols, str):
|
||||
return _range2cols(usecols)
|
||||
|
||||
return usecols
|
||||
|
||||
|
||||
@overload
|
||||
def validate_freeze_panes(freeze_panes: tuple[int, int]) -> Literal[True]:
|
||||
...
|
||||
|
||||
|
||||
@overload
|
||||
def validate_freeze_panes(freeze_panes: None) -> Literal[False]:
|
||||
...
|
||||
|
||||
|
||||
def validate_freeze_panes(freeze_panes: tuple[int, int] | None) -> bool:
|
||||
if freeze_panes is not None:
|
||||
if len(freeze_panes) == 2 and all(
|
||||
isinstance(item, int) for item in freeze_panes
|
||||
):
|
||||
return True
|
||||
|
||||
raise ValueError(
|
||||
"freeze_panes must be of form (row, column) "
|
||||
"where row and column are integers"
|
||||
)
|
||||
|
||||
# freeze_panes wasn't specified, return False so it won't be applied
|
||||
# to output sheet
|
||||
return False
|
||||
|
||||
|
||||
def fill_mi_header(
|
||||
row: list[Hashable], control_row: list[bool]
|
||||
) -> tuple[list[Hashable], list[bool]]:
|
||||
"""
|
||||
Forward fill blank entries in row but only inside the same parent index.
|
||||
|
||||
Used for creating headers in Multiindex.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
row : list
|
||||
List of items in a single row.
|
||||
control_row : list of bool
|
||||
Helps to determine if particular column is in same parent index as the
|
||||
previous value. Used to stop propagation of empty cells between
|
||||
different indexes.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Returns changed row and control_row
|
||||
"""
|
||||
last = row[0]
|
||||
for i in range(1, len(row)):
|
||||
if not control_row[i]:
|
||||
last = row[i]
|
||||
|
||||
if row[i] == "" or row[i] is None:
|
||||
row[i] = last
|
||||
else:
|
||||
control_row[i] = False
|
||||
last = row[i]
|
||||
|
||||
return row, control_row
|
||||
|
||||
|
||||
def pop_header_name(
|
||||
row: list[Hashable], index_col: int | Sequence[int]
|
||||
) -> tuple[Hashable | None, list[Hashable]]:
|
||||
"""
|
||||
Pop the header name for MultiIndex parsing.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
row : list
|
||||
The data row to parse for the header name.
|
||||
index_col : int, list
|
||||
The index columns for our data. Assumed to be non-null.
|
||||
|
||||
Returns
|
||||
-------
|
||||
header_name : str
|
||||
The extracted header name.
|
||||
trimmed_row : list
|
||||
The original data row with the header name removed.
|
||||
"""
|
||||
# Pop out header name and fill w/blank.
|
||||
if is_list_like(index_col):
|
||||
assert isinstance(index_col, Iterable)
|
||||
i = max(index_col)
|
||||
else:
|
||||
assert not isinstance(index_col, Iterable)
|
||||
i = index_col
|
||||
|
||||
header_name = row[i]
|
||||
header_name = None if header_name == "" else header_name
|
||||
|
||||
return header_name, row[:i] + [""] + row[i + 1 :]
|
||||
|
||||
|
||||
def combine_kwargs(engine_kwargs: dict[str, Any] | None, kwargs: dict) -> dict:
|
||||
"""
|
||||
Used to combine two sources of kwargs for the backend engine.
|
||||
|
||||
Use of kwargs is deprecated, this function is solely for use in 1.3 and should
|
||||
be removed in 1.4/2.0. Also _base.ExcelWriter.__new__ ensures either engine_kwargs
|
||||
or kwargs must be None or empty respectively.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
engine_kwargs: dict
|
||||
kwargs to be passed through to the engine.
|
||||
kwargs: dict
|
||||
kwargs to be psased through to the engine (deprecated)
|
||||
|
||||
Returns
|
||||
-------
|
||||
engine_kwargs combined with kwargs
|
||||
"""
|
||||
if engine_kwargs is None:
|
||||
result = {}
|
||||
else:
|
||||
result = engine_kwargs.copy()
|
||||
result.update(kwargs)
|
||||
return result
|
143
venv/lib/python3.12/site-packages/pandas/io/excel/_xlrd.py
Normal file
143
venv/lib/python3.12/site-packages/pandas/io/excel/_xlrd.py
Normal file
@ -0,0 +1,143 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from datetime import time
|
||||
import math
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas.compat._optional import import_optional_dependency
|
||||
from pandas.util._decorators import doc
|
||||
|
||||
from pandas.core.shared_docs import _shared_docs
|
||||
|
||||
from pandas.io.excel._base import BaseExcelReader
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from xlrd import Book
|
||||
|
||||
from pandas._typing import (
|
||||
Scalar,
|
||||
StorageOptions,
|
||||
)
|
||||
|
||||
|
||||
class XlrdReader(BaseExcelReader["Book"]):
|
||||
@doc(storage_options=_shared_docs["storage_options"])
|
||||
def __init__(
|
||||
self,
|
||||
filepath_or_buffer,
|
||||
storage_options: StorageOptions | None = None,
|
||||
engine_kwargs: dict | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
Reader using xlrd engine.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
filepath_or_buffer : str, path object or Workbook
|
||||
Object to be parsed.
|
||||
{storage_options}
|
||||
engine_kwargs : dict, optional
|
||||
Arbitrary keyword arguments passed to excel engine.
|
||||
"""
|
||||
err_msg = "Install xlrd >= 2.0.1 for xls Excel support"
|
||||
import_optional_dependency("xlrd", extra=err_msg)
|
||||
super().__init__(
|
||||
filepath_or_buffer,
|
||||
storage_options=storage_options,
|
||||
engine_kwargs=engine_kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def _workbook_class(self) -> type[Book]:
|
||||
from xlrd import Book
|
||||
|
||||
return Book
|
||||
|
||||
def load_workbook(self, filepath_or_buffer, engine_kwargs) -> Book:
|
||||
from xlrd import open_workbook
|
||||
|
||||
if hasattr(filepath_or_buffer, "read"):
|
||||
data = filepath_or_buffer.read()
|
||||
return open_workbook(file_contents=data, **engine_kwargs)
|
||||
else:
|
||||
return open_workbook(filepath_or_buffer, **engine_kwargs)
|
||||
|
||||
@property
|
||||
def sheet_names(self):
|
||||
return self.book.sheet_names()
|
||||
|
||||
def get_sheet_by_name(self, name):
|
||||
self.raise_if_bad_sheet_by_name(name)
|
||||
return self.book.sheet_by_name(name)
|
||||
|
||||
def get_sheet_by_index(self, index):
|
||||
self.raise_if_bad_sheet_by_index(index)
|
||||
return self.book.sheet_by_index(index)
|
||||
|
||||
def get_sheet_data(
|
||||
self, sheet, file_rows_needed: int | None = None
|
||||
) -> list[list[Scalar]]:
|
||||
from xlrd import (
|
||||
XL_CELL_BOOLEAN,
|
||||
XL_CELL_DATE,
|
||||
XL_CELL_ERROR,
|
||||
XL_CELL_NUMBER,
|
||||
xldate,
|
||||
)
|
||||
|
||||
epoch1904 = self.book.datemode
|
||||
|
||||
def _parse_cell(cell_contents, cell_typ):
|
||||
"""
|
||||
converts the contents of the cell into a pandas appropriate object
|
||||
"""
|
||||
if cell_typ == XL_CELL_DATE:
|
||||
# Use the newer xlrd datetime handling.
|
||||
try:
|
||||
cell_contents = xldate.xldate_as_datetime(cell_contents, epoch1904)
|
||||
except OverflowError:
|
||||
return cell_contents
|
||||
|
||||
# Excel doesn't distinguish between dates and time,
|
||||
# so we treat dates on the epoch as times only.
|
||||
# Also, Excel supports 1900 and 1904 epochs.
|
||||
year = (cell_contents.timetuple())[0:3]
|
||||
if (not epoch1904 and year == (1899, 12, 31)) or (
|
||||
epoch1904 and year == (1904, 1, 1)
|
||||
):
|
||||
cell_contents = time(
|
||||
cell_contents.hour,
|
||||
cell_contents.minute,
|
||||
cell_contents.second,
|
||||
cell_contents.microsecond,
|
||||
)
|
||||
|
||||
elif cell_typ == XL_CELL_ERROR:
|
||||
cell_contents = np.nan
|
||||
elif cell_typ == XL_CELL_BOOLEAN:
|
||||
cell_contents = bool(cell_contents)
|
||||
elif cell_typ == XL_CELL_NUMBER:
|
||||
# GH5394 - Excel 'numbers' are always floats
|
||||
# it's a minimal perf hit and less surprising
|
||||
if math.isfinite(cell_contents):
|
||||
# GH54564 - don't attempt to convert NaN/Inf
|
||||
val = int(cell_contents)
|
||||
if val == cell_contents:
|
||||
cell_contents = val
|
||||
return cell_contents
|
||||
|
||||
data = []
|
||||
|
||||
nrows = sheet.nrows
|
||||
if file_rows_needed is not None:
|
||||
nrows = min(nrows, file_rows_needed)
|
||||
for i in range(nrows):
|
||||
row = [
|
||||
_parse_cell(value, typ)
|
||||
for value, typ in zip(sheet.row_values(i), sheet.row_types(i))
|
||||
]
|
||||
data.append(row)
|
||||
|
||||
return data
|
284
venv/lib/python3.12/site-packages/pandas/io/excel/_xlsxwriter.py
Normal file
284
venv/lib/python3.12/site-packages/pandas/io/excel/_xlsxwriter.py
Normal file
@ -0,0 +1,284 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
)
|
||||
|
||||
from pandas.io.excel._base import ExcelWriter
|
||||
from pandas.io.excel._util import (
|
||||
combine_kwargs,
|
||||
validate_freeze_panes,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pandas._typing import (
|
||||
ExcelWriterIfSheetExists,
|
||||
FilePath,
|
||||
StorageOptions,
|
||||
WriteExcelBuffer,
|
||||
)
|
||||
|
||||
|
||||
class _XlsxStyler:
|
||||
# Map from openpyxl-oriented styles to flatter xlsxwriter representation
|
||||
# Ordering necessary for both determinism and because some are keyed by
|
||||
# prefixes of others.
|
||||
STYLE_MAPPING: dict[str, list[tuple[tuple[str, ...], str]]] = {
|
||||
"font": [
|
||||
(("name",), "font_name"),
|
||||
(("sz",), "font_size"),
|
||||
(("size",), "font_size"),
|
||||
(("color", "rgb"), "font_color"),
|
||||
(("color",), "font_color"),
|
||||
(("b",), "bold"),
|
||||
(("bold",), "bold"),
|
||||
(("i",), "italic"),
|
||||
(("italic",), "italic"),
|
||||
(("u",), "underline"),
|
||||
(("underline",), "underline"),
|
||||
(("strike",), "font_strikeout"),
|
||||
(("vertAlign",), "font_script"),
|
||||
(("vertalign",), "font_script"),
|
||||
],
|
||||
"number_format": [(("format_code",), "num_format"), ((), "num_format")],
|
||||
"protection": [(("locked",), "locked"), (("hidden",), "hidden")],
|
||||
"alignment": [
|
||||
(("horizontal",), "align"),
|
||||
(("vertical",), "valign"),
|
||||
(("text_rotation",), "rotation"),
|
||||
(("wrap_text",), "text_wrap"),
|
||||
(("indent",), "indent"),
|
||||
(("shrink_to_fit",), "shrink"),
|
||||
],
|
||||
"fill": [
|
||||
(("patternType",), "pattern"),
|
||||
(("patterntype",), "pattern"),
|
||||
(("fill_type",), "pattern"),
|
||||
(("start_color", "rgb"), "fg_color"),
|
||||
(("fgColor", "rgb"), "fg_color"),
|
||||
(("fgcolor", "rgb"), "fg_color"),
|
||||
(("start_color",), "fg_color"),
|
||||
(("fgColor",), "fg_color"),
|
||||
(("fgcolor",), "fg_color"),
|
||||
(("end_color", "rgb"), "bg_color"),
|
||||
(("bgColor", "rgb"), "bg_color"),
|
||||
(("bgcolor", "rgb"), "bg_color"),
|
||||
(("end_color",), "bg_color"),
|
||||
(("bgColor",), "bg_color"),
|
||||
(("bgcolor",), "bg_color"),
|
||||
],
|
||||
"border": [
|
||||
(("color", "rgb"), "border_color"),
|
||||
(("color",), "border_color"),
|
||||
(("style",), "border"),
|
||||
(("top", "color", "rgb"), "top_color"),
|
||||
(("top", "color"), "top_color"),
|
||||
(("top", "style"), "top"),
|
||||
(("top",), "top"),
|
||||
(("right", "color", "rgb"), "right_color"),
|
||||
(("right", "color"), "right_color"),
|
||||
(("right", "style"), "right"),
|
||||
(("right",), "right"),
|
||||
(("bottom", "color", "rgb"), "bottom_color"),
|
||||
(("bottom", "color"), "bottom_color"),
|
||||
(("bottom", "style"), "bottom"),
|
||||
(("bottom",), "bottom"),
|
||||
(("left", "color", "rgb"), "left_color"),
|
||||
(("left", "color"), "left_color"),
|
||||
(("left", "style"), "left"),
|
||||
(("left",), "left"),
|
||||
],
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def convert(cls, style_dict, num_format_str=None):
|
||||
"""
|
||||
converts a style_dict to an xlsxwriter format dict
|
||||
|
||||
Parameters
|
||||
----------
|
||||
style_dict : style dictionary to convert
|
||||
num_format_str : optional number format string
|
||||
"""
|
||||
# Create a XlsxWriter format object.
|
||||
props = {}
|
||||
|
||||
if num_format_str is not None:
|
||||
props["num_format"] = num_format_str
|
||||
|
||||
if style_dict is None:
|
||||
return props
|
||||
|
||||
if "borders" in style_dict:
|
||||
style_dict = style_dict.copy()
|
||||
style_dict["border"] = style_dict.pop("borders")
|
||||
|
||||
for style_group_key, style_group in style_dict.items():
|
||||
for src, dst in cls.STYLE_MAPPING.get(style_group_key, []):
|
||||
# src is a sequence of keys into a nested dict
|
||||
# dst is a flat key
|
||||
if dst in props:
|
||||
continue
|
||||
v = style_group
|
||||
for k in src:
|
||||
try:
|
||||
v = v[k]
|
||||
except (KeyError, TypeError):
|
||||
break
|
||||
else:
|
||||
props[dst] = v
|
||||
|
||||
if isinstance(props.get("pattern"), str):
|
||||
# TODO: support other fill patterns
|
||||
props["pattern"] = 0 if props["pattern"] == "none" else 1
|
||||
|
||||
for k in ["border", "top", "right", "bottom", "left"]:
|
||||
if isinstance(props.get(k), str):
|
||||
try:
|
||||
props[k] = [
|
||||
"none",
|
||||
"thin",
|
||||
"medium",
|
||||
"dashed",
|
||||
"dotted",
|
||||
"thick",
|
||||
"double",
|
||||
"hair",
|
||||
"mediumDashed",
|
||||
"dashDot",
|
||||
"mediumDashDot",
|
||||
"dashDotDot",
|
||||
"mediumDashDotDot",
|
||||
"slantDashDot",
|
||||
].index(props[k])
|
||||
except ValueError:
|
||||
props[k] = 2
|
||||
|
||||
if isinstance(props.get("font_script"), str):
|
||||
props["font_script"] = ["baseline", "superscript", "subscript"].index(
|
||||
props["font_script"]
|
||||
)
|
||||
|
||||
if isinstance(props.get("underline"), str):
|
||||
props["underline"] = {
|
||||
"none": 0,
|
||||
"single": 1,
|
||||
"double": 2,
|
||||
"singleAccounting": 33,
|
||||
"doubleAccounting": 34,
|
||||
}[props["underline"]]
|
||||
|
||||
# GH 30107 - xlsxwriter uses different name
|
||||
if props.get("valign") == "center":
|
||||
props["valign"] = "vcenter"
|
||||
|
||||
return props
|
||||
|
||||
|
||||
class XlsxWriter(ExcelWriter):
|
||||
_engine = "xlsxwriter"
|
||||
_supported_extensions = (".xlsx",)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
path: FilePath | WriteExcelBuffer | ExcelWriter,
|
||||
engine: str | None = None,
|
||||
date_format: str | None = None,
|
||||
datetime_format: str | None = None,
|
||||
mode: str = "w",
|
||||
storage_options: StorageOptions | None = None,
|
||||
if_sheet_exists: ExcelWriterIfSheetExists | None = None,
|
||||
engine_kwargs: dict[str, Any] | None = None,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
# Use the xlsxwriter module as the Excel writer.
|
||||
from xlsxwriter import Workbook
|
||||
|
||||
engine_kwargs = combine_kwargs(engine_kwargs, kwargs)
|
||||
|
||||
if mode == "a":
|
||||
raise ValueError("Append mode is not supported with xlsxwriter!")
|
||||
|
||||
super().__init__(
|
||||
path,
|
||||
engine=engine,
|
||||
date_format=date_format,
|
||||
datetime_format=datetime_format,
|
||||
mode=mode,
|
||||
storage_options=storage_options,
|
||||
if_sheet_exists=if_sheet_exists,
|
||||
engine_kwargs=engine_kwargs,
|
||||
)
|
||||
|
||||
try:
|
||||
self._book = Workbook(self._handles.handle, **engine_kwargs)
|
||||
except TypeError:
|
||||
self._handles.handle.close()
|
||||
raise
|
||||
|
||||
@property
|
||||
def book(self):
|
||||
"""
|
||||
Book instance of class xlsxwriter.Workbook.
|
||||
|
||||
This attribute can be used to access engine-specific features.
|
||||
"""
|
||||
return self._book
|
||||
|
||||
@property
|
||||
def sheets(self) -> dict[str, Any]:
|
||||
result = self.book.sheetnames
|
||||
return result
|
||||
|
||||
def _save(self) -> None:
|
||||
"""
|
||||
Save workbook to disk.
|
||||
"""
|
||||
self.book.close()
|
||||
|
||||
def _write_cells(
|
||||
self,
|
||||
cells,
|
||||
sheet_name: str | None = None,
|
||||
startrow: int = 0,
|
||||
startcol: int = 0,
|
||||
freeze_panes: tuple[int, int] | None = None,
|
||||
) -> None:
|
||||
# Write the frame cells using xlsxwriter.
|
||||
sheet_name = self._get_sheet_name(sheet_name)
|
||||
|
||||
wks = self.book.get_worksheet_by_name(sheet_name)
|
||||
if wks is None:
|
||||
wks = self.book.add_worksheet(sheet_name)
|
||||
|
||||
style_dict = {"null": None}
|
||||
|
||||
if validate_freeze_panes(freeze_panes):
|
||||
wks.freeze_panes(*(freeze_panes))
|
||||
|
||||
for cell in cells:
|
||||
val, fmt = self._value_with_fmt(cell.val)
|
||||
|
||||
stylekey = json.dumps(cell.style)
|
||||
if fmt:
|
||||
stylekey += fmt
|
||||
|
||||
if stylekey in style_dict:
|
||||
style = style_dict[stylekey]
|
||||
else:
|
||||
style = self.book.add_format(_XlsxStyler.convert(cell.style, fmt))
|
||||
style_dict[stylekey] = style
|
||||
|
||||
if cell.mergestart is not None and cell.mergeend is not None:
|
||||
wks.merge_range(
|
||||
startrow + cell.row,
|
||||
startcol + cell.col,
|
||||
startrow + cell.mergestart,
|
||||
startcol + cell.mergeend,
|
||||
val,
|
||||
style,
|
||||
)
|
||||
else:
|
||||
wks.write(startrow + cell.row, startcol + cell.col, val, style)
|
143
venv/lib/python3.12/site-packages/pandas/io/feather_format.py
Normal file
143
venv/lib/python3.12/site-packages/pandas/io/feather_format.py
Normal file
@ -0,0 +1,143 @@
|
||||
""" feather-format compat """
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
)
|
||||
|
||||
from pandas._config import using_pyarrow_string_dtype
|
||||
|
||||
from pandas._libs import lib
|
||||
from pandas.compat._optional import import_optional_dependency
|
||||
from pandas.util._decorators import doc
|
||||
from pandas.util._validators import check_dtype_backend
|
||||
|
||||
import pandas as pd
|
||||
from pandas.core.api import DataFrame
|
||||
from pandas.core.shared_docs import _shared_docs
|
||||
|
||||
from pandas.io._util import arrow_string_types_mapper
|
||||
from pandas.io.common import get_handle
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import (
|
||||
Hashable,
|
||||
Sequence,
|
||||
)
|
||||
|
||||
from pandas._typing import (
|
||||
DtypeBackend,
|
||||
FilePath,
|
||||
ReadBuffer,
|
||||
StorageOptions,
|
||||
WriteBuffer,
|
||||
)
|
||||
|
||||
|
||||
@doc(storage_options=_shared_docs["storage_options"])
|
||||
def to_feather(
|
||||
df: DataFrame,
|
||||
path: FilePath | WriteBuffer[bytes],
|
||||
storage_options: StorageOptions | None = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""
|
||||
Write a DataFrame to the binary Feather format.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
df : DataFrame
|
||||
path : str, path object, or file-like object
|
||||
{storage_options}
|
||||
**kwargs :
|
||||
Additional keywords passed to `pyarrow.feather.write_feather`.
|
||||
|
||||
"""
|
||||
import_optional_dependency("pyarrow")
|
||||
from pyarrow import feather
|
||||
|
||||
if not isinstance(df, DataFrame):
|
||||
raise ValueError("feather only support IO with DataFrames")
|
||||
|
||||
with get_handle(
|
||||
path, "wb", storage_options=storage_options, is_text=False
|
||||
) as handles:
|
||||
feather.write_feather(df, handles.handle, **kwargs)
|
||||
|
||||
|
||||
@doc(storage_options=_shared_docs["storage_options"])
|
||||
def read_feather(
|
||||
path: FilePath | ReadBuffer[bytes],
|
||||
columns: Sequence[Hashable] | None = None,
|
||||
use_threads: bool = True,
|
||||
storage_options: StorageOptions | None = None,
|
||||
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load a feather-format object from the file path.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path : str, path object, or file-like object
|
||||
String, path object (implementing ``os.PathLike[str]``), or file-like
|
||||
object implementing a binary ``read()`` function. The string could be a URL.
|
||||
Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is
|
||||
expected. A local file could be: ``file://localhost/path/to/table.feather``.
|
||||
columns : sequence, default None
|
||||
If not provided, all columns are read.
|
||||
use_threads : bool, default True
|
||||
Whether to parallelize reading using multiple threads.
|
||||
{storage_options}
|
||||
|
||||
dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable'
|
||||
Back-end data type applied to the resultant :class:`DataFrame`
|
||||
(still experimental). Behaviour is as follows:
|
||||
|
||||
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
|
||||
(default).
|
||||
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
|
||||
DataFrame.
|
||||
|
||||
.. versionadded:: 2.0
|
||||
|
||||
Returns
|
||||
-------
|
||||
type of object stored in file
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> df = pd.read_feather("path/to/file.feather") # doctest: +SKIP
|
||||
"""
|
||||
import_optional_dependency("pyarrow")
|
||||
from pyarrow import feather
|
||||
|
||||
# import utils to register the pyarrow extension types
|
||||
import pandas.core.arrays.arrow.extension_types # pyright: ignore[reportUnusedImport] # noqa: F401
|
||||
|
||||
check_dtype_backend(dtype_backend)
|
||||
|
||||
with get_handle(
|
||||
path, "rb", storage_options=storage_options, is_text=False
|
||||
) as handles:
|
||||
if dtype_backend is lib.no_default and not using_pyarrow_string_dtype():
|
||||
return feather.read_feather(
|
||||
handles.handle, columns=columns, use_threads=bool(use_threads)
|
||||
)
|
||||
|
||||
pa_table = feather.read_table(
|
||||
handles.handle, columns=columns, use_threads=bool(use_threads)
|
||||
)
|
||||
|
||||
if dtype_backend == "numpy_nullable":
|
||||
from pandas.io._util import _arrow_dtype_mapping
|
||||
|
||||
return pa_table.to_pandas(types_mapper=_arrow_dtype_mapping().get)
|
||||
|
||||
elif dtype_backend == "pyarrow":
|
||||
return pa_table.to_pandas(types_mapper=pd.ArrowDtype)
|
||||
|
||||
elif using_pyarrow_string_dtype():
|
||||
return pa_table.to_pandas(types_mapper=arrow_string_types_mapper())
|
||||
else:
|
||||
raise NotImplementedError
|
@ -0,0 +1,9 @@
|
||||
# ruff: noqa: TCH004
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
if TYPE_CHECKING:
|
||||
# import modules that have public classes/functions
|
||||
from pandas.io.formats import style
|
||||
|
||||
# and mark only those modules as public
|
||||
__all__ = ["style"]
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,157 @@
|
||||
# GH37967: Enable the use of CSS named colors, as defined in
|
||||
# matplotlib.colors.CSS4_COLORS, when exporting to Excel.
|
||||
# This data has been copied here, instead of being imported from matplotlib,
|
||||
# not to have ``to_excel`` methods require matplotlib.
|
||||
# source: matplotlib._color_data (3.3.3)
|
||||
from __future__ import annotations
|
||||
|
||||
CSS4_COLORS = {
|
||||
"aliceblue": "F0F8FF",
|
||||
"antiquewhite": "FAEBD7",
|
||||
"aqua": "00FFFF",
|
||||
"aquamarine": "7FFFD4",
|
||||
"azure": "F0FFFF",
|
||||
"beige": "F5F5DC",
|
||||
"bisque": "FFE4C4",
|
||||
"black": "000000",
|
||||
"blanchedalmond": "FFEBCD",
|
||||
"blue": "0000FF",
|
||||
"blueviolet": "8A2BE2",
|
||||
"brown": "A52A2A",
|
||||
"burlywood": "DEB887",
|
||||
"cadetblue": "5F9EA0",
|
||||
"chartreuse": "7FFF00",
|
||||
"chocolate": "D2691E",
|
||||
"coral": "FF7F50",
|
||||
"cornflowerblue": "6495ED",
|
||||
"cornsilk": "FFF8DC",
|
||||
"crimson": "DC143C",
|
||||
"cyan": "00FFFF",
|
||||
"darkblue": "00008B",
|
||||
"darkcyan": "008B8B",
|
||||
"darkgoldenrod": "B8860B",
|
||||
"darkgray": "A9A9A9",
|
||||
"darkgreen": "006400",
|
||||
"darkgrey": "A9A9A9",
|
||||
"darkkhaki": "BDB76B",
|
||||
"darkmagenta": "8B008B",
|
||||
"darkolivegreen": "556B2F",
|
||||
"darkorange": "FF8C00",
|
||||
"darkorchid": "9932CC",
|
||||
"darkred": "8B0000",
|
||||
"darksalmon": "E9967A",
|
||||
"darkseagreen": "8FBC8F",
|
||||
"darkslateblue": "483D8B",
|
||||
"darkslategray": "2F4F4F",
|
||||
"darkslategrey": "2F4F4F",
|
||||
"darkturquoise": "00CED1",
|
||||
"darkviolet": "9400D3",
|
||||
"deeppink": "FF1493",
|
||||
"deepskyblue": "00BFFF",
|
||||
"dimgray": "696969",
|
||||
"dimgrey": "696969",
|
||||
"dodgerblue": "1E90FF",
|
||||
"firebrick": "B22222",
|
||||
"floralwhite": "FFFAF0",
|
||||
"forestgreen": "228B22",
|
||||
"fuchsia": "FF00FF",
|
||||
"gainsboro": "DCDCDC",
|
||||
"ghostwhite": "F8F8FF",
|
||||
"gold": "FFD700",
|
||||
"goldenrod": "DAA520",
|
||||
"gray": "808080",
|
||||
"green": "008000",
|
||||
"greenyellow": "ADFF2F",
|
||||
"grey": "808080",
|
||||
"honeydew": "F0FFF0",
|
||||
"hotpink": "FF69B4",
|
||||
"indianred": "CD5C5C",
|
||||
"indigo": "4B0082",
|
||||
"ivory": "FFFFF0",
|
||||
"khaki": "F0E68C",
|
||||
"lavender": "E6E6FA",
|
||||
"lavenderblush": "FFF0F5",
|
||||
"lawngreen": "7CFC00",
|
||||
"lemonchiffon": "FFFACD",
|
||||
"lightblue": "ADD8E6",
|
||||
"lightcoral": "F08080",
|
||||
"lightcyan": "E0FFFF",
|
||||
"lightgoldenrodyellow": "FAFAD2",
|
||||
"lightgray": "D3D3D3",
|
||||
"lightgreen": "90EE90",
|
||||
"lightgrey": "D3D3D3",
|
||||
"lightpink": "FFB6C1",
|
||||
"lightsalmon": "FFA07A",
|
||||
"lightseagreen": "20B2AA",
|
||||
"lightskyblue": "87CEFA",
|
||||
"lightslategray": "778899",
|
||||
"lightslategrey": "778899",
|
||||
"lightsteelblue": "B0C4DE",
|
||||
"lightyellow": "FFFFE0",
|
||||
"lime": "00FF00",
|
||||
"limegreen": "32CD32",
|
||||
"linen": "FAF0E6",
|
||||
"magenta": "FF00FF",
|
||||
"maroon": "800000",
|
||||
"mediumaquamarine": "66CDAA",
|
||||
"mediumblue": "0000CD",
|
||||
"mediumorchid": "BA55D3",
|
||||
"mediumpurple": "9370DB",
|
||||
"mediumseagreen": "3CB371",
|
||||
"mediumslateblue": "7B68EE",
|
||||
"mediumspringgreen": "00FA9A",
|
||||
"mediumturquoise": "48D1CC",
|
||||
"mediumvioletred": "C71585",
|
||||
"midnightblue": "191970",
|
||||
"mintcream": "F5FFFA",
|
||||
"mistyrose": "FFE4E1",
|
||||
"moccasin": "FFE4B5",
|
||||
"navajowhite": "FFDEAD",
|
||||
"navy": "000080",
|
||||
"oldlace": "FDF5E6",
|
||||
"olive": "808000",
|
||||
"olivedrab": "6B8E23",
|
||||
"orange": "FFA500",
|
||||
"orangered": "FF4500",
|
||||
"orchid": "DA70D6",
|
||||
"palegoldenrod": "EEE8AA",
|
||||
"palegreen": "98FB98",
|
||||
"paleturquoise": "AFEEEE",
|
||||
"palevioletred": "DB7093",
|
||||
"papayawhip": "FFEFD5",
|
||||
"peachpuff": "FFDAB9",
|
||||
"peru": "CD853F",
|
||||
"pink": "FFC0CB",
|
||||
"plum": "DDA0DD",
|
||||
"powderblue": "B0E0E6",
|
||||
"purple": "800080",
|
||||
"rebeccapurple": "663399",
|
||||
"red": "FF0000",
|
||||
"rosybrown": "BC8F8F",
|
||||
"royalblue": "4169E1",
|
||||
"saddlebrown": "8B4513",
|
||||
"salmon": "FA8072",
|
||||
"sandybrown": "F4A460",
|
||||
"seagreen": "2E8B57",
|
||||
"seashell": "FFF5EE",
|
||||
"sienna": "A0522D",
|
||||
"silver": "C0C0C0",
|
||||
"skyblue": "87CEEB",
|
||||
"slateblue": "6A5ACD",
|
||||
"slategray": "708090",
|
||||
"slategrey": "708090",
|
||||
"snow": "FFFAFA",
|
||||
"springgreen": "00FF7F",
|
||||
"steelblue": "4682B4",
|
||||
"tan": "D2B48C",
|
||||
"teal": "008080",
|
||||
"thistle": "D8BFD8",
|
||||
"tomato": "FF6347",
|
||||
"turquoise": "40E0D0",
|
||||
"violet": "EE82EE",
|
||||
"wheat": "F5DEB3",
|
||||
"white": "FFFFFF",
|
||||
"whitesmoke": "F5F5F5",
|
||||
"yellow": "FFFF00",
|
||||
"yellowgreen": "9ACD32",
|
||||
}
|
@ -0,0 +1,94 @@
|
||||
"""
|
||||
Internal module for console introspection
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from shutil import get_terminal_size
|
||||
|
||||
|
||||
def get_console_size() -> tuple[int | None, int | None]:
|
||||
"""
|
||||
Return console size as tuple = (width, height).
|
||||
|
||||
Returns (None,None) in non-interactive session.
|
||||
"""
|
||||
from pandas import get_option
|
||||
|
||||
display_width = get_option("display.width")
|
||||
display_height = get_option("display.max_rows")
|
||||
|
||||
# Consider
|
||||
# interactive shell terminal, can detect term size
|
||||
# interactive non-shell terminal (ipnb/ipqtconsole), cannot detect term
|
||||
# size non-interactive script, should disregard term size
|
||||
|
||||
# in addition
|
||||
# width,height have default values, but setting to 'None' signals
|
||||
# should use Auto-Detection, But only in interactive shell-terminal.
|
||||
# Simple. yeah.
|
||||
|
||||
if in_interactive_session():
|
||||
if in_ipython_frontend():
|
||||
# sane defaults for interactive non-shell terminal
|
||||
# match default for width,height in config_init
|
||||
from pandas._config.config import get_default_val
|
||||
|
||||
terminal_width = get_default_val("display.width")
|
||||
terminal_height = get_default_val("display.max_rows")
|
||||
else:
|
||||
# pure terminal
|
||||
terminal_width, terminal_height = get_terminal_size()
|
||||
else:
|
||||
terminal_width, terminal_height = None, None
|
||||
|
||||
# Note if the User sets width/Height to None (auto-detection)
|
||||
# and we're in a script (non-inter), this will return (None,None)
|
||||
# caller needs to deal.
|
||||
return display_width or terminal_width, display_height or terminal_height
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------
|
||||
# Detect our environment
|
||||
|
||||
|
||||
def in_interactive_session() -> bool:
|
||||
"""
|
||||
Check if we're running in an interactive shell.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if running under python/ipython interactive shell.
|
||||
"""
|
||||
from pandas import get_option
|
||||
|
||||
def check_main():
|
||||
try:
|
||||
import __main__ as main
|
||||
except ModuleNotFoundError:
|
||||
return get_option("mode.sim_interactive")
|
||||
return not hasattr(main, "__file__") or get_option("mode.sim_interactive")
|
||||
|
||||
try:
|
||||
# error: Name '__IPYTHON__' is not defined
|
||||
return __IPYTHON__ or check_main() # type: ignore[name-defined]
|
||||
except NameError:
|
||||
return check_main()
|
||||
|
||||
|
||||
def in_ipython_frontend() -> bool:
|
||||
"""
|
||||
Check if we're inside an IPython zmq frontend.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
"""
|
||||
try:
|
||||
# error: Name 'get_ipython' is not defined
|
||||
ip = get_ipython() # type: ignore[name-defined]
|
||||
return "zmq" in str(type(ip)).lower()
|
||||
except NameError:
|
||||
pass
|
||||
|
||||
return False
|
421
venv/lib/python3.12/site-packages/pandas/io/formats/css.py
Normal file
421
venv/lib/python3.12/site-packages/pandas/io/formats/css.py
Normal file
@ -0,0 +1,421 @@
|
||||
"""
|
||||
Utilities for interpreting CSS from Stylers for formatting non-HTML outputs.
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
import re
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Callable,
|
||||
)
|
||||
import warnings
|
||||
|
||||
from pandas.errors import CSSWarning
|
||||
from pandas.util._exceptions import find_stack_level
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import (
|
||||
Generator,
|
||||
Iterable,
|
||||
Iterator,
|
||||
)
|
||||
|
||||
|
||||
def _side_expander(prop_fmt: str) -> Callable:
|
||||
"""
|
||||
Wrapper to expand shorthand property into top, right, bottom, left properties
|
||||
|
||||
Parameters
|
||||
----------
|
||||
side : str
|
||||
The border side to expand into properties
|
||||
|
||||
Returns
|
||||
-------
|
||||
function: Return to call when a 'border(-{side}): {value}' string is encountered
|
||||
"""
|
||||
|
||||
def expand(self, prop, value: str) -> Generator[tuple[str, str], None, None]:
|
||||
"""
|
||||
Expand shorthand property into side-specific property (top, right, bottom, left)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
prop (str): CSS property name
|
||||
value (str): String token for property
|
||||
|
||||
Yields
|
||||
------
|
||||
Tuple (str, str): Expanded property, value
|
||||
"""
|
||||
tokens = value.split()
|
||||
try:
|
||||
mapping = self.SIDE_SHORTHANDS[len(tokens)]
|
||||
except KeyError:
|
||||
warnings.warn(
|
||||
f'Could not expand "{prop}: {value}"',
|
||||
CSSWarning,
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
return
|
||||
for key, idx in zip(self.SIDES, mapping):
|
||||
yield prop_fmt.format(key), tokens[idx]
|
||||
|
||||
return expand
|
||||
|
||||
|
||||
def _border_expander(side: str = "") -> Callable:
|
||||
"""
|
||||
Wrapper to expand 'border' property into border color, style, and width properties
|
||||
|
||||
Parameters
|
||||
----------
|
||||
side : str
|
||||
The border side to expand into properties
|
||||
|
||||
Returns
|
||||
-------
|
||||
function: Return to call when a 'border(-{side}): {value}' string is encountered
|
||||
"""
|
||||
if side != "":
|
||||
side = f"-{side}"
|
||||
|
||||
def expand(self, prop, value: str) -> Generator[tuple[str, str], None, None]:
|
||||
"""
|
||||
Expand border into color, style, and width tuples
|
||||
|
||||
Parameters
|
||||
----------
|
||||
prop : str
|
||||
CSS property name passed to styler
|
||||
value : str
|
||||
Value passed to styler for property
|
||||
|
||||
Yields
|
||||
------
|
||||
Tuple (str, str): Expanded property, value
|
||||
"""
|
||||
tokens = value.split()
|
||||
if len(tokens) == 0 or len(tokens) > 3:
|
||||
warnings.warn(
|
||||
f'Too many tokens provided to "{prop}" (expected 1-3)',
|
||||
CSSWarning,
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
|
||||
# TODO: Can we use current color as initial value to comply with CSS standards?
|
||||
border_declarations = {
|
||||
f"border{side}-color": "black",
|
||||
f"border{side}-style": "none",
|
||||
f"border{side}-width": "medium",
|
||||
}
|
||||
for token in tokens:
|
||||
if token.lower() in self.BORDER_STYLES:
|
||||
border_declarations[f"border{side}-style"] = token
|
||||
elif any(ratio in token.lower() for ratio in self.BORDER_WIDTH_RATIOS):
|
||||
border_declarations[f"border{side}-width"] = token
|
||||
else:
|
||||
border_declarations[f"border{side}-color"] = token
|
||||
# TODO: Warn user if item entered more than once (e.g. "border: red green")
|
||||
|
||||
# Per CSS, "border" will reset previous "border-*" definitions
|
||||
yield from self.atomize(border_declarations.items())
|
||||
|
||||
return expand
|
||||
|
||||
|
||||
class CSSResolver:
|
||||
"""
|
||||
A callable for parsing and resolving CSS to atomic properties.
|
||||
"""
|
||||
|
||||
UNIT_RATIOS = {
|
||||
"pt": ("pt", 1),
|
||||
"em": ("em", 1),
|
||||
"rem": ("pt", 12),
|
||||
"ex": ("em", 0.5),
|
||||
# 'ch':
|
||||
"px": ("pt", 0.75),
|
||||
"pc": ("pt", 12),
|
||||
"in": ("pt", 72),
|
||||
"cm": ("in", 1 / 2.54),
|
||||
"mm": ("in", 1 / 25.4),
|
||||
"q": ("mm", 0.25),
|
||||
"!!default": ("em", 0),
|
||||
}
|
||||
|
||||
FONT_SIZE_RATIOS = UNIT_RATIOS.copy()
|
||||
FONT_SIZE_RATIOS.update(
|
||||
{
|
||||
"%": ("em", 0.01),
|
||||
"xx-small": ("rem", 0.5),
|
||||
"x-small": ("rem", 0.625),
|
||||
"small": ("rem", 0.8),
|
||||
"medium": ("rem", 1),
|
||||
"large": ("rem", 1.125),
|
||||
"x-large": ("rem", 1.5),
|
||||
"xx-large": ("rem", 2),
|
||||
"smaller": ("em", 1 / 1.2),
|
||||
"larger": ("em", 1.2),
|
||||
"!!default": ("em", 1),
|
||||
}
|
||||
)
|
||||
|
||||
MARGIN_RATIOS = UNIT_RATIOS.copy()
|
||||
MARGIN_RATIOS.update({"none": ("pt", 0)})
|
||||
|
||||
BORDER_WIDTH_RATIOS = UNIT_RATIOS.copy()
|
||||
BORDER_WIDTH_RATIOS.update(
|
||||
{
|
||||
"none": ("pt", 0),
|
||||
"thick": ("px", 4),
|
||||
"medium": ("px", 2),
|
||||
"thin": ("px", 1),
|
||||
# Default: medium only if solid
|
||||
}
|
||||
)
|
||||
|
||||
BORDER_STYLES = [
|
||||
"none",
|
||||
"hidden",
|
||||
"dotted",
|
||||
"dashed",
|
||||
"solid",
|
||||
"double",
|
||||
"groove",
|
||||
"ridge",
|
||||
"inset",
|
||||
"outset",
|
||||
"mediumdashdot",
|
||||
"dashdotdot",
|
||||
"hair",
|
||||
"mediumdashdotdot",
|
||||
"dashdot",
|
||||
"slantdashdot",
|
||||
"mediumdashed",
|
||||
]
|
||||
|
||||
SIDE_SHORTHANDS = {
|
||||
1: [0, 0, 0, 0],
|
||||
2: [0, 1, 0, 1],
|
||||
3: [0, 1, 2, 1],
|
||||
4: [0, 1, 2, 3],
|
||||
}
|
||||
|
||||
SIDES = ("top", "right", "bottom", "left")
|
||||
|
||||
CSS_EXPANSIONS = {
|
||||
**{
|
||||
(f"border-{prop}" if prop else "border"): _border_expander(prop)
|
||||
for prop in ["", "top", "right", "bottom", "left"]
|
||||
},
|
||||
**{
|
||||
f"border-{prop}": _side_expander(f"border-{{:s}}-{prop}")
|
||||
for prop in ["color", "style", "width"]
|
||||
},
|
||||
"margin": _side_expander("margin-{:s}"),
|
||||
"padding": _side_expander("padding-{:s}"),
|
||||
}
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
declarations: str | Iterable[tuple[str, str]],
|
||||
inherited: dict[str, str] | None = None,
|
||||
) -> dict[str, str]:
|
||||
"""
|
||||
The given declarations to atomic properties.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
declarations_str : str | Iterable[tuple[str, str]]
|
||||
A CSS string or set of CSS declaration tuples
|
||||
e.g. "font-weight: bold; background: blue" or
|
||||
{("font-weight", "bold"), ("background", "blue")}
|
||||
inherited : dict, optional
|
||||
Atomic properties indicating the inherited style context in which
|
||||
declarations_str is to be resolved. ``inherited`` should already
|
||||
be resolved, i.e. valid output of this method.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict
|
||||
Atomic CSS 2.2 properties.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> resolve = CSSResolver()
|
||||
>>> inherited = {'font-family': 'serif', 'font-weight': 'bold'}
|
||||
>>> out = resolve('''
|
||||
... border-color: BLUE RED;
|
||||
... font-size: 1em;
|
||||
... font-size: 2em;
|
||||
... font-weight: normal;
|
||||
... font-weight: inherit;
|
||||
... ''', inherited)
|
||||
>>> sorted(out.items()) # doctest: +NORMALIZE_WHITESPACE
|
||||
[('border-bottom-color', 'blue'),
|
||||
('border-left-color', 'red'),
|
||||
('border-right-color', 'red'),
|
||||
('border-top-color', 'blue'),
|
||||
('font-family', 'serif'),
|
||||
('font-size', '24pt'),
|
||||
('font-weight', 'bold')]
|
||||
"""
|
||||
if isinstance(declarations, str):
|
||||
declarations = self.parse(declarations)
|
||||
props = dict(self.atomize(declarations))
|
||||
if inherited is None:
|
||||
inherited = {}
|
||||
|
||||
props = self._update_initial(props, inherited)
|
||||
props = self._update_font_size(props, inherited)
|
||||
return self._update_other_units(props)
|
||||
|
||||
def _update_initial(
|
||||
self,
|
||||
props: dict[str, str],
|
||||
inherited: dict[str, str],
|
||||
) -> dict[str, str]:
|
||||
# 1. resolve inherited, initial
|
||||
for prop, val in inherited.items():
|
||||
if prop not in props:
|
||||
props[prop] = val
|
||||
|
||||
new_props = props.copy()
|
||||
for prop, val in props.items():
|
||||
if val == "inherit":
|
||||
val = inherited.get(prop, "initial")
|
||||
|
||||
if val in ("initial", None):
|
||||
# we do not define a complete initial stylesheet
|
||||
del new_props[prop]
|
||||
else:
|
||||
new_props[prop] = val
|
||||
return new_props
|
||||
|
||||
def _update_font_size(
|
||||
self,
|
||||
props: dict[str, str],
|
||||
inherited: dict[str, str],
|
||||
) -> dict[str, str]:
|
||||
# 2. resolve relative font size
|
||||
if props.get("font-size"):
|
||||
props["font-size"] = self.size_to_pt(
|
||||
props["font-size"],
|
||||
self._get_font_size(inherited),
|
||||
conversions=self.FONT_SIZE_RATIOS,
|
||||
)
|
||||
return props
|
||||
|
||||
def _get_font_size(self, props: dict[str, str]) -> float | None:
|
||||
if props.get("font-size"):
|
||||
font_size_string = props["font-size"]
|
||||
return self._get_float_font_size_from_pt(font_size_string)
|
||||
return None
|
||||
|
||||
def _get_float_font_size_from_pt(self, font_size_string: str) -> float:
|
||||
assert font_size_string.endswith("pt")
|
||||
return float(font_size_string.rstrip("pt"))
|
||||
|
||||
def _update_other_units(self, props: dict[str, str]) -> dict[str, str]:
|
||||
font_size = self._get_font_size(props)
|
||||
# 3. TODO: resolve other font-relative units
|
||||
for side in self.SIDES:
|
||||
prop = f"border-{side}-width"
|
||||
if prop in props:
|
||||
props[prop] = self.size_to_pt(
|
||||
props[prop],
|
||||
em_pt=font_size,
|
||||
conversions=self.BORDER_WIDTH_RATIOS,
|
||||
)
|
||||
|
||||
for prop in [f"margin-{side}", f"padding-{side}"]:
|
||||
if prop in props:
|
||||
# TODO: support %
|
||||
props[prop] = self.size_to_pt(
|
||||
props[prop],
|
||||
em_pt=font_size,
|
||||
conversions=self.MARGIN_RATIOS,
|
||||
)
|
||||
return props
|
||||
|
||||
def size_to_pt(self, in_val, em_pt=None, conversions=UNIT_RATIOS) -> str:
|
||||
def _error():
|
||||
warnings.warn(
|
||||
f"Unhandled size: {repr(in_val)}",
|
||||
CSSWarning,
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
return self.size_to_pt("1!!default", conversions=conversions)
|
||||
|
||||
match = re.match(r"^(\S*?)([a-zA-Z%!].*)", in_val)
|
||||
if match is None:
|
||||
return _error()
|
||||
|
||||
val, unit = match.groups()
|
||||
if val == "":
|
||||
# hack for 'large' etc.
|
||||
val = 1
|
||||
else:
|
||||
try:
|
||||
val = float(val)
|
||||
except ValueError:
|
||||
return _error()
|
||||
|
||||
while unit != "pt":
|
||||
if unit == "em":
|
||||
if em_pt is None:
|
||||
unit = "rem"
|
||||
else:
|
||||
val *= em_pt
|
||||
unit = "pt"
|
||||
continue
|
||||
|
||||
try:
|
||||
unit, mul = conversions[unit]
|
||||
except KeyError:
|
||||
return _error()
|
||||
val *= mul
|
||||
|
||||
val = round(val, 5)
|
||||
if int(val) == val:
|
||||
size_fmt = f"{int(val):d}pt"
|
||||
else:
|
||||
size_fmt = f"{val:f}pt"
|
||||
return size_fmt
|
||||
|
||||
def atomize(self, declarations: Iterable) -> Generator[tuple[str, str], None, None]:
|
||||
for prop, value in declarations:
|
||||
prop = prop.lower()
|
||||
value = value.lower()
|
||||
if prop in self.CSS_EXPANSIONS:
|
||||
expand = self.CSS_EXPANSIONS[prop]
|
||||
yield from expand(self, prop, value)
|
||||
else:
|
||||
yield prop, value
|
||||
|
||||
def parse(self, declarations_str: str) -> Iterator[tuple[str, str]]:
|
||||
"""
|
||||
Generates (prop, value) pairs from declarations.
|
||||
|
||||
In a future version may generate parsed tokens from tinycss/tinycss2
|
||||
|
||||
Parameters
|
||||
----------
|
||||
declarations_str : str
|
||||
"""
|
||||
for decl in declarations_str.split(";"):
|
||||
if not decl.strip():
|
||||
continue
|
||||
prop, sep, val = decl.partition(":")
|
||||
prop = prop.strip().lower()
|
||||
# TODO: don't lowercase case sensitive parts of values (strings)
|
||||
val = val.strip().lower()
|
||||
if sep:
|
||||
yield prop, val
|
||||
else:
|
||||
warnings.warn(
|
||||
f"Ill-formatted attribute: expected a colon in {repr(decl)}",
|
||||
CSSWarning,
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
330
venv/lib/python3.12/site-packages/pandas/io/formats/csvs.py
Normal file
330
venv/lib/python3.12/site-packages/pandas/io/formats/csvs.py
Normal file
@ -0,0 +1,330 @@
|
||||
"""
|
||||
Module for formatting output data into CSV files.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import (
|
||||
Hashable,
|
||||
Iterable,
|
||||
Iterator,
|
||||
Sequence,
|
||||
)
|
||||
import csv as csvlib
|
||||
import os
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
cast,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas._libs import writers as libwriters
|
||||
from pandas._typing import SequenceNotStr
|
||||
from pandas.util._decorators import cache_readonly
|
||||
|
||||
from pandas.core.dtypes.generic import (
|
||||
ABCDatetimeIndex,
|
||||
ABCIndex,
|
||||
ABCMultiIndex,
|
||||
ABCPeriodIndex,
|
||||
)
|
||||
from pandas.core.dtypes.missing import notna
|
||||
|
||||
from pandas.core.indexes.api import Index
|
||||
|
||||
from pandas.io.common import get_handle
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pandas._typing import (
|
||||
CompressionOptions,
|
||||
FilePath,
|
||||
FloatFormatType,
|
||||
IndexLabel,
|
||||
StorageOptions,
|
||||
WriteBuffer,
|
||||
npt,
|
||||
)
|
||||
|
||||
from pandas.io.formats.format import DataFrameFormatter
|
||||
|
||||
|
||||
_DEFAULT_CHUNKSIZE_CELLS = 100_000
|
||||
|
||||
|
||||
class CSVFormatter:
|
||||
cols: npt.NDArray[np.object_]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
formatter: DataFrameFormatter,
|
||||
path_or_buf: FilePath | WriteBuffer[str] | WriteBuffer[bytes] = "",
|
||||
sep: str = ",",
|
||||
cols: Sequence[Hashable] | None = None,
|
||||
index_label: IndexLabel | None = None,
|
||||
mode: str = "w",
|
||||
encoding: str | None = None,
|
||||
errors: str = "strict",
|
||||
compression: CompressionOptions = "infer",
|
||||
quoting: int | None = None,
|
||||
lineterminator: str | None = "\n",
|
||||
chunksize: int | None = None,
|
||||
quotechar: str | None = '"',
|
||||
date_format: str | None = None,
|
||||
doublequote: bool = True,
|
||||
escapechar: str | None = None,
|
||||
storage_options: StorageOptions | None = None,
|
||||
) -> None:
|
||||
self.fmt = formatter
|
||||
|
||||
self.obj = self.fmt.frame
|
||||
|
||||
self.filepath_or_buffer = path_or_buf
|
||||
self.encoding = encoding
|
||||
self.compression: CompressionOptions = compression
|
||||
self.mode = mode
|
||||
self.storage_options = storage_options
|
||||
|
||||
self.sep = sep
|
||||
self.index_label = self._initialize_index_label(index_label)
|
||||
self.errors = errors
|
||||
self.quoting = quoting or csvlib.QUOTE_MINIMAL
|
||||
self.quotechar = self._initialize_quotechar(quotechar)
|
||||
self.doublequote = doublequote
|
||||
self.escapechar = escapechar
|
||||
self.lineterminator = lineterminator or os.linesep
|
||||
self.date_format = date_format
|
||||
self.cols = self._initialize_columns(cols)
|
||||
self.chunksize = self._initialize_chunksize(chunksize)
|
||||
|
||||
@property
|
||||
def na_rep(self) -> str:
|
||||
return self.fmt.na_rep
|
||||
|
||||
@property
|
||||
def float_format(self) -> FloatFormatType | None:
|
||||
return self.fmt.float_format
|
||||
|
||||
@property
|
||||
def decimal(self) -> str:
|
||||
return self.fmt.decimal
|
||||
|
||||
@property
|
||||
def header(self) -> bool | SequenceNotStr[str]:
|
||||
return self.fmt.header
|
||||
|
||||
@property
|
||||
def index(self) -> bool:
|
||||
return self.fmt.index
|
||||
|
||||
def _initialize_index_label(self, index_label: IndexLabel | None) -> IndexLabel:
|
||||
if index_label is not False:
|
||||
if index_label is None:
|
||||
return self._get_index_label_from_obj()
|
||||
elif not isinstance(index_label, (list, tuple, np.ndarray, ABCIndex)):
|
||||
# given a string for a DF with Index
|
||||
return [index_label]
|
||||
return index_label
|
||||
|
||||
def _get_index_label_from_obj(self) -> Sequence[Hashable]:
|
||||
if isinstance(self.obj.index, ABCMultiIndex):
|
||||
return self._get_index_label_multiindex()
|
||||
else:
|
||||
return self._get_index_label_flat()
|
||||
|
||||
def _get_index_label_multiindex(self) -> Sequence[Hashable]:
|
||||
return [name or "" for name in self.obj.index.names]
|
||||
|
||||
def _get_index_label_flat(self) -> Sequence[Hashable]:
|
||||
index_label = self.obj.index.name
|
||||
return [""] if index_label is None else [index_label]
|
||||
|
||||
def _initialize_quotechar(self, quotechar: str | None) -> str | None:
|
||||
if self.quoting != csvlib.QUOTE_NONE:
|
||||
# prevents crash in _csv
|
||||
return quotechar
|
||||
return None
|
||||
|
||||
@property
|
||||
def has_mi_columns(self) -> bool:
|
||||
return bool(isinstance(self.obj.columns, ABCMultiIndex))
|
||||
|
||||
def _initialize_columns(
|
||||
self, cols: Iterable[Hashable] | None
|
||||
) -> npt.NDArray[np.object_]:
|
||||
# validate mi options
|
||||
if self.has_mi_columns:
|
||||
if cols is not None:
|
||||
msg = "cannot specify cols with a MultiIndex on the columns"
|
||||
raise TypeError(msg)
|
||||
|
||||
if cols is not None:
|
||||
if isinstance(cols, ABCIndex):
|
||||
cols = cols._get_values_for_csv(**self._number_format)
|
||||
else:
|
||||
cols = list(cols)
|
||||
self.obj = self.obj.loc[:, cols]
|
||||
|
||||
# update columns to include possible multiplicity of dupes
|
||||
# and make sure cols is just a list of labels
|
||||
new_cols = self.obj.columns
|
||||
return new_cols._get_values_for_csv(**self._number_format)
|
||||
|
||||
def _initialize_chunksize(self, chunksize: int | None) -> int:
|
||||
if chunksize is None:
|
||||
return (_DEFAULT_CHUNKSIZE_CELLS // (len(self.cols) or 1)) or 1
|
||||
return int(chunksize)
|
||||
|
||||
@property
|
||||
def _number_format(self) -> dict[str, Any]:
|
||||
"""Dictionary used for storing number formatting settings."""
|
||||
return {
|
||||
"na_rep": self.na_rep,
|
||||
"float_format": self.float_format,
|
||||
"date_format": self.date_format,
|
||||
"quoting": self.quoting,
|
||||
"decimal": self.decimal,
|
||||
}
|
||||
|
||||
@cache_readonly
|
||||
def data_index(self) -> Index:
|
||||
data_index = self.obj.index
|
||||
if (
|
||||
isinstance(data_index, (ABCDatetimeIndex, ABCPeriodIndex))
|
||||
and self.date_format is not None
|
||||
):
|
||||
data_index = Index(
|
||||
[x.strftime(self.date_format) if notna(x) else "" for x in data_index]
|
||||
)
|
||||
elif isinstance(data_index, ABCMultiIndex):
|
||||
data_index = data_index.remove_unused_levels()
|
||||
return data_index
|
||||
|
||||
@property
|
||||
def nlevels(self) -> int:
|
||||
if self.index:
|
||||
return getattr(self.data_index, "nlevels", 1)
|
||||
else:
|
||||
return 0
|
||||
|
||||
@property
|
||||
def _has_aliases(self) -> bool:
|
||||
return isinstance(self.header, (tuple, list, np.ndarray, ABCIndex))
|
||||
|
||||
@property
|
||||
def _need_to_save_header(self) -> bool:
|
||||
return bool(self._has_aliases or self.header)
|
||||
|
||||
@property
|
||||
def write_cols(self) -> SequenceNotStr[Hashable]:
|
||||
if self._has_aliases:
|
||||
assert not isinstance(self.header, bool)
|
||||
if len(self.header) != len(self.cols):
|
||||
raise ValueError(
|
||||
f"Writing {len(self.cols)} cols but got {len(self.header)} aliases"
|
||||
)
|
||||
return self.header
|
||||
else:
|
||||
# self.cols is an ndarray derived from Index._get_values_for_csv,
|
||||
# so its entries are strings, i.e. hashable
|
||||
return cast(SequenceNotStr[Hashable], self.cols)
|
||||
|
||||
@property
|
||||
def encoded_labels(self) -> list[Hashable]:
|
||||
encoded_labels: list[Hashable] = []
|
||||
|
||||
if self.index and self.index_label:
|
||||
assert isinstance(self.index_label, Sequence)
|
||||
encoded_labels = list(self.index_label)
|
||||
|
||||
if not self.has_mi_columns or self._has_aliases:
|
||||
encoded_labels += list(self.write_cols)
|
||||
|
||||
return encoded_labels
|
||||
|
||||
def save(self) -> None:
|
||||
"""
|
||||
Create the writer & save.
|
||||
"""
|
||||
# apply compression and byte/text conversion
|
||||
with get_handle(
|
||||
self.filepath_or_buffer,
|
||||
self.mode,
|
||||
encoding=self.encoding,
|
||||
errors=self.errors,
|
||||
compression=self.compression,
|
||||
storage_options=self.storage_options,
|
||||
) as handles:
|
||||
# Note: self.encoding is irrelevant here
|
||||
self.writer = csvlib.writer(
|
||||
handles.handle,
|
||||
lineterminator=self.lineterminator,
|
||||
delimiter=self.sep,
|
||||
quoting=self.quoting,
|
||||
doublequote=self.doublequote,
|
||||
escapechar=self.escapechar,
|
||||
quotechar=self.quotechar,
|
||||
)
|
||||
|
||||
self._save()
|
||||
|
||||
def _save(self) -> None:
|
||||
if self._need_to_save_header:
|
||||
self._save_header()
|
||||
self._save_body()
|
||||
|
||||
def _save_header(self) -> None:
|
||||
if not self.has_mi_columns or self._has_aliases:
|
||||
self.writer.writerow(self.encoded_labels)
|
||||
else:
|
||||
for row in self._generate_multiindex_header_rows():
|
||||
self.writer.writerow(row)
|
||||
|
||||
def _generate_multiindex_header_rows(self) -> Iterator[list[Hashable]]:
|
||||
columns = self.obj.columns
|
||||
for i in range(columns.nlevels):
|
||||
# we need at least 1 index column to write our col names
|
||||
col_line = []
|
||||
if self.index:
|
||||
# name is the first column
|
||||
col_line.append(columns.names[i])
|
||||
|
||||
if isinstance(self.index_label, list) and len(self.index_label) > 1:
|
||||
col_line.extend([""] * (len(self.index_label) - 1))
|
||||
|
||||
col_line.extend(columns._get_level_values(i))
|
||||
yield col_line
|
||||
|
||||
# Write out the index line if it's not empty.
|
||||
# Otherwise, we will print out an extraneous
|
||||
# blank line between the mi and the data rows.
|
||||
if self.encoded_labels and set(self.encoded_labels) != {""}:
|
||||
yield self.encoded_labels + [""] * len(columns)
|
||||
|
||||
def _save_body(self) -> None:
|
||||
nrows = len(self.data_index)
|
||||
chunks = (nrows // self.chunksize) + 1
|
||||
for i in range(chunks):
|
||||
start_i = i * self.chunksize
|
||||
end_i = min(start_i + self.chunksize, nrows)
|
||||
if start_i >= end_i:
|
||||
break
|
||||
self._save_chunk(start_i, end_i)
|
||||
|
||||
def _save_chunk(self, start_i: int, end_i: int) -> None:
|
||||
# create the data for a chunk
|
||||
slicer = slice(start_i, end_i)
|
||||
df = self.obj.iloc[slicer]
|
||||
|
||||
res = df._get_values_for_csv(**self._number_format)
|
||||
data = list(res._iter_column_arrays())
|
||||
|
||||
ix = self.data_index[slicer]._get_values_for_csv(**self._number_format)
|
||||
libwriters.write_csv_rows(
|
||||
data,
|
||||
ix,
|
||||
self.nlevels,
|
||||
self.cols,
|
||||
self.writer,
|
||||
)
|
962
venv/lib/python3.12/site-packages/pandas/io/formats/excel.py
Normal file
962
venv/lib/python3.12/site-packages/pandas/io/formats/excel.py
Normal file
@ -0,0 +1,962 @@
|
||||
"""
|
||||
Utilities for conversion to writer-agnostic Excel representation.
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import (
|
||||
Hashable,
|
||||
Iterable,
|
||||
Mapping,
|
||||
Sequence,
|
||||
)
|
||||
import functools
|
||||
import itertools
|
||||
import re
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Callable,
|
||||
cast,
|
||||
)
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas._libs.lib import is_list_like
|
||||
from pandas.util._decorators import doc
|
||||
from pandas.util._exceptions import find_stack_level
|
||||
|
||||
from pandas.core.dtypes import missing
|
||||
from pandas.core.dtypes.common import (
|
||||
is_float,
|
||||
is_scalar,
|
||||
)
|
||||
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
Index,
|
||||
MultiIndex,
|
||||
PeriodIndex,
|
||||
)
|
||||
import pandas.core.common as com
|
||||
from pandas.core.shared_docs import _shared_docs
|
||||
|
||||
from pandas.io.formats._color_data import CSS4_COLORS
|
||||
from pandas.io.formats.css import (
|
||||
CSSResolver,
|
||||
CSSWarning,
|
||||
)
|
||||
from pandas.io.formats.format import get_level_lengths
|
||||
from pandas.io.formats.printing import pprint_thing
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pandas._typing import (
|
||||
FilePath,
|
||||
IndexLabel,
|
||||
StorageOptions,
|
||||
WriteExcelBuffer,
|
||||
)
|
||||
|
||||
from pandas import ExcelWriter
|
||||
|
||||
|
||||
class ExcelCell:
|
||||
__fields__ = ("row", "col", "val", "style", "mergestart", "mergeend")
|
||||
__slots__ = __fields__
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
row: int,
|
||||
col: int,
|
||||
val,
|
||||
style=None,
|
||||
mergestart: int | None = None,
|
||||
mergeend: int | None = None,
|
||||
) -> None:
|
||||
self.row = row
|
||||
self.col = col
|
||||
self.val = val
|
||||
self.style = style
|
||||
self.mergestart = mergestart
|
||||
self.mergeend = mergeend
|
||||
|
||||
|
||||
class CssExcelCell(ExcelCell):
|
||||
def __init__(
|
||||
self,
|
||||
row: int,
|
||||
col: int,
|
||||
val,
|
||||
style: dict | None,
|
||||
css_styles: dict[tuple[int, int], list[tuple[str, Any]]] | None,
|
||||
css_row: int,
|
||||
css_col: int,
|
||||
css_converter: Callable | None,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
if css_styles and css_converter:
|
||||
# Use dict to get only one (case-insensitive) declaration per property
|
||||
declaration_dict = {
|
||||
prop.lower(): val for prop, val in css_styles[css_row, css_col]
|
||||
}
|
||||
# Convert to frozenset for order-invariant caching
|
||||
unique_declarations = frozenset(declaration_dict.items())
|
||||
style = css_converter(unique_declarations)
|
||||
|
||||
super().__init__(row=row, col=col, val=val, style=style, **kwargs)
|
||||
|
||||
|
||||
class CSSToExcelConverter:
|
||||
"""
|
||||
A callable for converting CSS declarations to ExcelWriter styles
|
||||
|
||||
Supports parts of CSS 2.2, with minimal CSS 3.0 support (e.g. text-shadow),
|
||||
focusing on font styling, backgrounds, borders and alignment.
|
||||
|
||||
Operates by first computing CSS styles in a fairly generic
|
||||
way (see :meth:`compute_css`) then determining Excel style
|
||||
properties from CSS properties (see :meth:`build_xlstyle`).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
inherited : str, optional
|
||||
CSS declarations understood to be the containing scope for the
|
||||
CSS processed by :meth:`__call__`.
|
||||
"""
|
||||
|
||||
NAMED_COLORS = CSS4_COLORS
|
||||
|
||||
VERTICAL_MAP = {
|
||||
"top": "top",
|
||||
"text-top": "top",
|
||||
"middle": "center",
|
||||
"baseline": "bottom",
|
||||
"bottom": "bottom",
|
||||
"text-bottom": "bottom",
|
||||
# OpenXML also has 'justify', 'distributed'
|
||||
}
|
||||
|
||||
BOLD_MAP = {
|
||||
"bold": True,
|
||||
"bolder": True,
|
||||
"600": True,
|
||||
"700": True,
|
||||
"800": True,
|
||||
"900": True,
|
||||
"normal": False,
|
||||
"lighter": False,
|
||||
"100": False,
|
||||
"200": False,
|
||||
"300": False,
|
||||
"400": False,
|
||||
"500": False,
|
||||
}
|
||||
|
||||
ITALIC_MAP = {
|
||||
"normal": False,
|
||||
"italic": True,
|
||||
"oblique": True,
|
||||
}
|
||||
|
||||
FAMILY_MAP = {
|
||||
"serif": 1, # roman
|
||||
"sans-serif": 2, # swiss
|
||||
"cursive": 4, # script
|
||||
"fantasy": 5, # decorative
|
||||
}
|
||||
|
||||
BORDER_STYLE_MAP = {
|
||||
style.lower(): style
|
||||
for style in [
|
||||
"dashed",
|
||||
"mediumDashDot",
|
||||
"dashDotDot",
|
||||
"hair",
|
||||
"dotted",
|
||||
"mediumDashDotDot",
|
||||
"double",
|
||||
"dashDot",
|
||||
"slantDashDot",
|
||||
"mediumDashed",
|
||||
]
|
||||
}
|
||||
|
||||
# NB: Most of the methods here could be classmethods, as only __init__
|
||||
# and __call__ make use of instance attributes. We leave them as
|
||||
# instancemethods so that users can easily experiment with extensions
|
||||
# without monkey-patching.
|
||||
inherited: dict[str, str] | None
|
||||
|
||||
def __init__(self, inherited: str | None = None) -> None:
|
||||
if inherited is not None:
|
||||
self.inherited = self.compute_css(inherited)
|
||||
else:
|
||||
self.inherited = None
|
||||
# We should avoid cache on the __call__ method.
|
||||
# Otherwise once the method __call__ has been called
|
||||
# garbage collection no longer deletes the instance.
|
||||
self._call_cached = functools.cache(self._call_uncached)
|
||||
|
||||
compute_css = CSSResolver()
|
||||
|
||||
def __call__(
|
||||
self, declarations: str | frozenset[tuple[str, str]]
|
||||
) -> dict[str, dict[str, str]]:
|
||||
"""
|
||||
Convert CSS declarations to ExcelWriter style.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
declarations : str | frozenset[tuple[str, str]]
|
||||
CSS string or set of CSS declaration tuples.
|
||||
e.g. "font-weight: bold; background: blue" or
|
||||
{("font-weight", "bold"), ("background", "blue")}
|
||||
|
||||
Returns
|
||||
-------
|
||||
xlstyle : dict
|
||||
A style as interpreted by ExcelWriter when found in
|
||||
ExcelCell.style.
|
||||
"""
|
||||
return self._call_cached(declarations)
|
||||
|
||||
def _call_uncached(
|
||||
self, declarations: str | frozenset[tuple[str, str]]
|
||||
) -> dict[str, dict[str, str]]:
|
||||
properties = self.compute_css(declarations, self.inherited)
|
||||
return self.build_xlstyle(properties)
|
||||
|
||||
def build_xlstyle(self, props: Mapping[str, str]) -> dict[str, dict[str, str]]:
|
||||
out = {
|
||||
"alignment": self.build_alignment(props),
|
||||
"border": self.build_border(props),
|
||||
"fill": self.build_fill(props),
|
||||
"font": self.build_font(props),
|
||||
"number_format": self.build_number_format(props),
|
||||
}
|
||||
|
||||
# TODO: handle cell width and height: needs support in pandas.io.excel
|
||||
|
||||
def remove_none(d: dict[str, str | None]) -> None:
|
||||
"""Remove key where value is None, through nested dicts"""
|
||||
for k, v in list(d.items()):
|
||||
if v is None:
|
||||
del d[k]
|
||||
elif isinstance(v, dict):
|
||||
remove_none(v)
|
||||
if not v:
|
||||
del d[k]
|
||||
|
||||
remove_none(out)
|
||||
return out
|
||||
|
||||
def build_alignment(self, props: Mapping[str, str]) -> dict[str, bool | str | None]:
|
||||
# TODO: text-indent, padding-left -> alignment.indent
|
||||
return {
|
||||
"horizontal": props.get("text-align"),
|
||||
"vertical": self._get_vertical_alignment(props),
|
||||
"wrap_text": self._get_is_wrap_text(props),
|
||||
}
|
||||
|
||||
def _get_vertical_alignment(self, props: Mapping[str, str]) -> str | None:
|
||||
vertical_align = props.get("vertical-align")
|
||||
if vertical_align:
|
||||
return self.VERTICAL_MAP.get(vertical_align)
|
||||
return None
|
||||
|
||||
def _get_is_wrap_text(self, props: Mapping[str, str]) -> bool | None:
|
||||
if props.get("white-space") is None:
|
||||
return None
|
||||
return bool(props["white-space"] not in ("nowrap", "pre", "pre-line"))
|
||||
|
||||
def build_border(
|
||||
self, props: Mapping[str, str]
|
||||
) -> dict[str, dict[str, str | None]]:
|
||||
return {
|
||||
side: {
|
||||
"style": self._border_style(
|
||||
props.get(f"border-{side}-style"),
|
||||
props.get(f"border-{side}-width"),
|
||||
self.color_to_excel(props.get(f"border-{side}-color")),
|
||||
),
|
||||
"color": self.color_to_excel(props.get(f"border-{side}-color")),
|
||||
}
|
||||
for side in ["top", "right", "bottom", "left"]
|
||||
}
|
||||
|
||||
def _border_style(self, style: str | None, width: str | None, color: str | None):
|
||||
# convert styles and widths to openxml, one of:
|
||||
# 'dashDot'
|
||||
# 'dashDotDot'
|
||||
# 'dashed'
|
||||
# 'dotted'
|
||||
# 'double'
|
||||
# 'hair'
|
||||
# 'medium'
|
||||
# 'mediumDashDot'
|
||||
# 'mediumDashDotDot'
|
||||
# 'mediumDashed'
|
||||
# 'slantDashDot'
|
||||
# 'thick'
|
||||
# 'thin'
|
||||
if width is None and style is None and color is None:
|
||||
# Return None will remove "border" from style dictionary
|
||||
return None
|
||||
|
||||
if width is None and style is None:
|
||||
# Return "none" will keep "border" in style dictionary
|
||||
return "none"
|
||||
|
||||
if style in ("none", "hidden"):
|
||||
return "none"
|
||||
|
||||
width_name = self._get_width_name(width)
|
||||
if width_name is None:
|
||||
return "none"
|
||||
|
||||
if style in (None, "groove", "ridge", "inset", "outset", "solid"):
|
||||
# not handled
|
||||
return width_name
|
||||
|
||||
if style == "double":
|
||||
return "double"
|
||||
if style == "dotted":
|
||||
if width_name in ("hair", "thin"):
|
||||
return "dotted"
|
||||
return "mediumDashDotDot"
|
||||
if style == "dashed":
|
||||
if width_name in ("hair", "thin"):
|
||||
return "dashed"
|
||||
return "mediumDashed"
|
||||
elif style in self.BORDER_STYLE_MAP:
|
||||
# Excel-specific styles
|
||||
return self.BORDER_STYLE_MAP[style]
|
||||
else:
|
||||
warnings.warn(
|
||||
f"Unhandled border style format: {repr(style)}",
|
||||
CSSWarning,
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
return "none"
|
||||
|
||||
def _get_width_name(self, width_input: str | None) -> str | None:
|
||||
width = self._width_to_float(width_input)
|
||||
if width < 1e-5:
|
||||
return None
|
||||
elif width < 1.3:
|
||||
return "thin"
|
||||
elif width < 2.8:
|
||||
return "medium"
|
||||
return "thick"
|
||||
|
||||
def _width_to_float(self, width: str | None) -> float:
|
||||
if width is None:
|
||||
width = "2pt"
|
||||
return self._pt_to_float(width)
|
||||
|
||||
def _pt_to_float(self, pt_string: str) -> float:
|
||||
assert pt_string.endswith("pt")
|
||||
return float(pt_string.rstrip("pt"))
|
||||
|
||||
def build_fill(self, props: Mapping[str, str]):
|
||||
# TODO: perhaps allow for special properties
|
||||
# -excel-pattern-bgcolor and -excel-pattern-type
|
||||
fill_color = props.get("background-color")
|
||||
if fill_color not in (None, "transparent", "none"):
|
||||
return {"fgColor": self.color_to_excel(fill_color), "patternType": "solid"}
|
||||
|
||||
def build_number_format(self, props: Mapping[str, str]) -> dict[str, str | None]:
|
||||
fc = props.get("number-format")
|
||||
fc = fc.replace("§", ";") if isinstance(fc, str) else fc
|
||||
return {"format_code": fc}
|
||||
|
||||
def build_font(
|
||||
self, props: Mapping[str, str]
|
||||
) -> dict[str, bool | float | str | None]:
|
||||
font_names = self._get_font_names(props)
|
||||
decoration = self._get_decoration(props)
|
||||
return {
|
||||
"name": font_names[0] if font_names else None,
|
||||
"family": self._select_font_family(font_names),
|
||||
"size": self._get_font_size(props),
|
||||
"bold": self._get_is_bold(props),
|
||||
"italic": self._get_is_italic(props),
|
||||
"underline": ("single" if "underline" in decoration else None),
|
||||
"strike": ("line-through" in decoration) or None,
|
||||
"color": self.color_to_excel(props.get("color")),
|
||||
# shadow if nonzero digit before shadow color
|
||||
"shadow": self._get_shadow(props),
|
||||
}
|
||||
|
||||
def _get_is_bold(self, props: Mapping[str, str]) -> bool | None:
|
||||
weight = props.get("font-weight")
|
||||
if weight:
|
||||
return self.BOLD_MAP.get(weight)
|
||||
return None
|
||||
|
||||
def _get_is_italic(self, props: Mapping[str, str]) -> bool | None:
|
||||
font_style = props.get("font-style")
|
||||
if font_style:
|
||||
return self.ITALIC_MAP.get(font_style)
|
||||
return None
|
||||
|
||||
def _get_decoration(self, props: Mapping[str, str]) -> Sequence[str]:
|
||||
decoration = props.get("text-decoration")
|
||||
if decoration is not None:
|
||||
return decoration.split()
|
||||
else:
|
||||
return ()
|
||||
|
||||
def _get_underline(self, decoration: Sequence[str]) -> str | None:
|
||||
if "underline" in decoration:
|
||||
return "single"
|
||||
return None
|
||||
|
||||
def _get_shadow(self, props: Mapping[str, str]) -> bool | None:
|
||||
if "text-shadow" in props:
|
||||
return bool(re.search("^[^#(]*[1-9]", props["text-shadow"]))
|
||||
return None
|
||||
|
||||
def _get_font_names(self, props: Mapping[str, str]) -> Sequence[str]:
|
||||
font_names_tmp = re.findall(
|
||||
r"""(?x)
|
||||
(
|
||||
"(?:[^"]|\\")+"
|
||||
|
|
||||
'(?:[^']|\\')+'
|
||||
|
|
||||
[^'",]+
|
||||
)(?=,|\s*$)
|
||||
""",
|
||||
props.get("font-family", ""),
|
||||
)
|
||||
|
||||
font_names = []
|
||||
for name in font_names_tmp:
|
||||
if name[:1] == '"':
|
||||
name = name[1:-1].replace('\\"', '"')
|
||||
elif name[:1] == "'":
|
||||
name = name[1:-1].replace("\\'", "'")
|
||||
else:
|
||||
name = name.strip()
|
||||
if name:
|
||||
font_names.append(name)
|
||||
return font_names
|
||||
|
||||
def _get_font_size(self, props: Mapping[str, str]) -> float | None:
|
||||
size = props.get("font-size")
|
||||
if size is None:
|
||||
return size
|
||||
return self._pt_to_float(size)
|
||||
|
||||
def _select_font_family(self, font_names: Sequence[str]) -> int | None:
|
||||
family = None
|
||||
for name in font_names:
|
||||
family = self.FAMILY_MAP.get(name)
|
||||
if family:
|
||||
break
|
||||
|
||||
return family
|
||||
|
||||
def color_to_excel(self, val: str | None) -> str | None:
|
||||
if val is None:
|
||||
return None
|
||||
|
||||
if self._is_hex_color(val):
|
||||
return self._convert_hex_to_excel(val)
|
||||
|
||||
try:
|
||||
return self.NAMED_COLORS[val]
|
||||
except KeyError:
|
||||
warnings.warn(
|
||||
f"Unhandled color format: {repr(val)}",
|
||||
CSSWarning,
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
return None
|
||||
|
||||
def _is_hex_color(self, color_string: str) -> bool:
|
||||
return bool(color_string.startswith("#"))
|
||||
|
||||
def _convert_hex_to_excel(self, color_string: str) -> str:
|
||||
code = color_string.lstrip("#")
|
||||
if self._is_shorthand_color(color_string):
|
||||
return (code[0] * 2 + code[1] * 2 + code[2] * 2).upper()
|
||||
else:
|
||||
return code.upper()
|
||||
|
||||
def _is_shorthand_color(self, color_string: str) -> bool:
|
||||
"""Check if color code is shorthand.
|
||||
|
||||
#FFF is a shorthand as opposed to full #FFFFFF.
|
||||
"""
|
||||
code = color_string.lstrip("#")
|
||||
if len(code) == 3:
|
||||
return True
|
||||
elif len(code) == 6:
|
||||
return False
|
||||
else:
|
||||
raise ValueError(f"Unexpected color {color_string}")
|
||||
|
||||
|
||||
class ExcelFormatter:
|
||||
"""
|
||||
Class for formatting a DataFrame to a list of ExcelCells,
|
||||
|
||||
Parameters
|
||||
----------
|
||||
df : DataFrame or Styler
|
||||
na_rep: na representation
|
||||
float_format : str, default None
|
||||
Format string for floating point numbers
|
||||
cols : sequence, optional
|
||||
Columns to write
|
||||
header : bool or sequence of str, default True
|
||||
Write out column names. If a list of string is given it is
|
||||
assumed to be aliases for the column names
|
||||
index : bool, default True
|
||||
output row names (index)
|
||||
index_label : str or sequence, default None
|
||||
Column label for index column(s) if desired. If None is given, and
|
||||
`header` and `index` are True, then the index names are used. A
|
||||
sequence should be given if the DataFrame uses MultiIndex.
|
||||
merge_cells : bool, default False
|
||||
Format MultiIndex and Hierarchical Rows as merged cells.
|
||||
inf_rep : str, default `'inf'`
|
||||
representation for np.inf values (which aren't representable in Excel)
|
||||
A `'-'` sign will be added in front of -inf.
|
||||
style_converter : callable, optional
|
||||
This translates Styler styles (CSS) into ExcelWriter styles.
|
||||
Defaults to ``CSSToExcelConverter()``.
|
||||
It should have signature css_declarations string -> excel style.
|
||||
This is only called for body cells.
|
||||
"""
|
||||
|
||||
max_rows = 2**20
|
||||
max_cols = 2**14
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
df,
|
||||
na_rep: str = "",
|
||||
float_format: str | None = None,
|
||||
cols: Sequence[Hashable] | None = None,
|
||||
header: Sequence[Hashable] | bool = True,
|
||||
index: bool = True,
|
||||
index_label: IndexLabel | None = None,
|
||||
merge_cells: bool = False,
|
||||
inf_rep: str = "inf",
|
||||
style_converter: Callable | None = None,
|
||||
) -> None:
|
||||
self.rowcounter = 0
|
||||
self.na_rep = na_rep
|
||||
if not isinstance(df, DataFrame):
|
||||
self.styler = df
|
||||
self.styler._compute() # calculate applied styles
|
||||
df = df.data
|
||||
if style_converter is None:
|
||||
style_converter = CSSToExcelConverter()
|
||||
self.style_converter: Callable | None = style_converter
|
||||
else:
|
||||
self.styler = None
|
||||
self.style_converter = None
|
||||
self.df = df
|
||||
if cols is not None:
|
||||
# all missing, raise
|
||||
if not len(Index(cols).intersection(df.columns)):
|
||||
raise KeyError("passes columns are not ALL present dataframe")
|
||||
|
||||
if len(Index(cols).intersection(df.columns)) != len(set(cols)):
|
||||
# Deprecated in GH#17295, enforced in 1.0.0
|
||||
raise KeyError("Not all names specified in 'columns' are found")
|
||||
|
||||
self.df = df.reindex(columns=cols)
|
||||
|
||||
self.columns = self.df.columns
|
||||
self.float_format = float_format
|
||||
self.index = index
|
||||
self.index_label = index_label
|
||||
self.header = header
|
||||
self.merge_cells = merge_cells
|
||||
self.inf_rep = inf_rep
|
||||
|
||||
@property
|
||||
def header_style(self) -> dict[str, dict[str, str | bool]]:
|
||||
return {
|
||||
"font": {"bold": True},
|
||||
"borders": {
|
||||
"top": "thin",
|
||||
"right": "thin",
|
||||
"bottom": "thin",
|
||||
"left": "thin",
|
||||
},
|
||||
"alignment": {"horizontal": "center", "vertical": "top"},
|
||||
}
|
||||
|
||||
def _format_value(self, val):
|
||||
if is_scalar(val) and missing.isna(val):
|
||||
val = self.na_rep
|
||||
elif is_float(val):
|
||||
if missing.isposinf_scalar(val):
|
||||
val = self.inf_rep
|
||||
elif missing.isneginf_scalar(val):
|
||||
val = f"-{self.inf_rep}"
|
||||
elif self.float_format is not None:
|
||||
val = float(self.float_format % val)
|
||||
if getattr(val, "tzinfo", None) is not None:
|
||||
raise ValueError(
|
||||
"Excel does not support datetimes with "
|
||||
"timezones. Please ensure that datetimes "
|
||||
"are timezone unaware before writing to Excel."
|
||||
)
|
||||
return val
|
||||
|
||||
def _format_header_mi(self) -> Iterable[ExcelCell]:
|
||||
if self.columns.nlevels > 1:
|
||||
if not self.index:
|
||||
raise NotImplementedError(
|
||||
"Writing to Excel with MultiIndex columns and no "
|
||||
"index ('index'=False) is not yet implemented."
|
||||
)
|
||||
|
||||
if not (self._has_aliases or self.header):
|
||||
return
|
||||
|
||||
columns = self.columns
|
||||
level_strs = columns._format_multi(
|
||||
sparsify=self.merge_cells, include_names=False
|
||||
)
|
||||
level_lengths = get_level_lengths(level_strs)
|
||||
coloffset = 0
|
||||
lnum = 0
|
||||
|
||||
if self.index and isinstance(self.df.index, MultiIndex):
|
||||
coloffset = len(self.df.index[0]) - 1
|
||||
|
||||
if self.merge_cells:
|
||||
# Format multi-index as a merged cells.
|
||||
for lnum, name in enumerate(columns.names):
|
||||
yield ExcelCell(
|
||||
row=lnum,
|
||||
col=coloffset,
|
||||
val=name,
|
||||
style=self.header_style,
|
||||
)
|
||||
|
||||
for lnum, (spans, levels, level_codes) in enumerate(
|
||||
zip(level_lengths, columns.levels, columns.codes)
|
||||
):
|
||||
values = levels.take(level_codes)
|
||||
for i, span_val in spans.items():
|
||||
mergestart, mergeend = None, None
|
||||
if span_val > 1:
|
||||
mergestart, mergeend = lnum, coloffset + i + span_val
|
||||
yield CssExcelCell(
|
||||
row=lnum,
|
||||
col=coloffset + i + 1,
|
||||
val=values[i],
|
||||
style=self.header_style,
|
||||
css_styles=getattr(self.styler, "ctx_columns", None),
|
||||
css_row=lnum,
|
||||
css_col=i,
|
||||
css_converter=self.style_converter,
|
||||
mergestart=mergestart,
|
||||
mergeend=mergeend,
|
||||
)
|
||||
else:
|
||||
# Format in legacy format with dots to indicate levels.
|
||||
for i, values in enumerate(zip(*level_strs)):
|
||||
v = ".".join(map(pprint_thing, values))
|
||||
yield CssExcelCell(
|
||||
row=lnum,
|
||||
col=coloffset + i + 1,
|
||||
val=v,
|
||||
style=self.header_style,
|
||||
css_styles=getattr(self.styler, "ctx_columns", None),
|
||||
css_row=lnum,
|
||||
css_col=i,
|
||||
css_converter=self.style_converter,
|
||||
)
|
||||
|
||||
self.rowcounter = lnum
|
||||
|
||||
def _format_header_regular(self) -> Iterable[ExcelCell]:
|
||||
if self._has_aliases or self.header:
|
||||
coloffset = 0
|
||||
|
||||
if self.index:
|
||||
coloffset = 1
|
||||
if isinstance(self.df.index, MultiIndex):
|
||||
coloffset = len(self.df.index.names)
|
||||
|
||||
colnames = self.columns
|
||||
if self._has_aliases:
|
||||
self.header = cast(Sequence, self.header)
|
||||
if len(self.header) != len(self.columns):
|
||||
raise ValueError(
|
||||
f"Writing {len(self.columns)} cols "
|
||||
f"but got {len(self.header)} aliases"
|
||||
)
|
||||
colnames = self.header
|
||||
|
||||
for colindex, colname in enumerate(colnames):
|
||||
yield CssExcelCell(
|
||||
row=self.rowcounter,
|
||||
col=colindex + coloffset,
|
||||
val=colname,
|
||||
style=self.header_style,
|
||||
css_styles=getattr(self.styler, "ctx_columns", None),
|
||||
css_row=0,
|
||||
css_col=colindex,
|
||||
css_converter=self.style_converter,
|
||||
)
|
||||
|
||||
def _format_header(self) -> Iterable[ExcelCell]:
|
||||
gen: Iterable[ExcelCell]
|
||||
|
||||
if isinstance(self.columns, MultiIndex):
|
||||
gen = self._format_header_mi()
|
||||
else:
|
||||
gen = self._format_header_regular()
|
||||
|
||||
gen2: Iterable[ExcelCell] = ()
|
||||
|
||||
if self.df.index.names:
|
||||
row = [x if x is not None else "" for x in self.df.index.names] + [
|
||||
""
|
||||
] * len(self.columns)
|
||||
if functools.reduce(lambda x, y: x and y, (x != "" for x in row)):
|
||||
gen2 = (
|
||||
ExcelCell(self.rowcounter, colindex, val, self.header_style)
|
||||
for colindex, val in enumerate(row)
|
||||
)
|
||||
self.rowcounter += 1
|
||||
return itertools.chain(gen, gen2)
|
||||
|
||||
def _format_body(self) -> Iterable[ExcelCell]:
|
||||
if isinstance(self.df.index, MultiIndex):
|
||||
return self._format_hierarchical_rows()
|
||||
else:
|
||||
return self._format_regular_rows()
|
||||
|
||||
def _format_regular_rows(self) -> Iterable[ExcelCell]:
|
||||
if self._has_aliases or self.header:
|
||||
self.rowcounter += 1
|
||||
|
||||
# output index and index_label?
|
||||
if self.index:
|
||||
# check aliases
|
||||
# if list only take first as this is not a MultiIndex
|
||||
if self.index_label and isinstance(
|
||||
self.index_label, (list, tuple, np.ndarray, Index)
|
||||
):
|
||||
index_label = self.index_label[0]
|
||||
# if string good to go
|
||||
elif self.index_label and isinstance(self.index_label, str):
|
||||
index_label = self.index_label
|
||||
else:
|
||||
index_label = self.df.index.names[0]
|
||||
|
||||
if isinstance(self.columns, MultiIndex):
|
||||
self.rowcounter += 1
|
||||
|
||||
if index_label and self.header is not False:
|
||||
yield ExcelCell(self.rowcounter - 1, 0, index_label, self.header_style)
|
||||
|
||||
# write index_values
|
||||
index_values = self.df.index
|
||||
if isinstance(self.df.index, PeriodIndex):
|
||||
index_values = self.df.index.to_timestamp()
|
||||
|
||||
for idx, idxval in enumerate(index_values):
|
||||
yield CssExcelCell(
|
||||
row=self.rowcounter + idx,
|
||||
col=0,
|
||||
val=idxval,
|
||||
style=self.header_style,
|
||||
css_styles=getattr(self.styler, "ctx_index", None),
|
||||
css_row=idx,
|
||||
css_col=0,
|
||||
css_converter=self.style_converter,
|
||||
)
|
||||
coloffset = 1
|
||||
else:
|
||||
coloffset = 0
|
||||
|
||||
yield from self._generate_body(coloffset)
|
||||
|
||||
def _format_hierarchical_rows(self) -> Iterable[ExcelCell]:
|
||||
if self._has_aliases or self.header:
|
||||
self.rowcounter += 1
|
||||
|
||||
gcolidx = 0
|
||||
|
||||
if self.index:
|
||||
index_labels = self.df.index.names
|
||||
# check for aliases
|
||||
if self.index_label and isinstance(
|
||||
self.index_label, (list, tuple, np.ndarray, Index)
|
||||
):
|
||||
index_labels = self.index_label
|
||||
|
||||
# MultiIndex columns require an extra row
|
||||
# with index names (blank if None) for
|
||||
# unambiguous round-trip, unless not merging,
|
||||
# in which case the names all go on one row Issue #11328
|
||||
if isinstance(self.columns, MultiIndex) and self.merge_cells:
|
||||
self.rowcounter += 1
|
||||
|
||||
# if index labels are not empty go ahead and dump
|
||||
if com.any_not_none(*index_labels) and self.header is not False:
|
||||
for cidx, name in enumerate(index_labels):
|
||||
yield ExcelCell(self.rowcounter - 1, cidx, name, self.header_style)
|
||||
|
||||
if self.merge_cells:
|
||||
# Format hierarchical rows as merged cells.
|
||||
level_strs = self.df.index._format_multi(
|
||||
sparsify=True, include_names=False
|
||||
)
|
||||
level_lengths = get_level_lengths(level_strs)
|
||||
|
||||
for spans, levels, level_codes in zip(
|
||||
level_lengths, self.df.index.levels, self.df.index.codes
|
||||
):
|
||||
values = levels.take(
|
||||
level_codes,
|
||||
allow_fill=levels._can_hold_na,
|
||||
fill_value=levels._na_value,
|
||||
)
|
||||
|
||||
for i, span_val in spans.items():
|
||||
mergestart, mergeend = None, None
|
||||
if span_val > 1:
|
||||
mergestart = self.rowcounter + i + span_val - 1
|
||||
mergeend = gcolidx
|
||||
yield CssExcelCell(
|
||||
row=self.rowcounter + i,
|
||||
col=gcolidx,
|
||||
val=values[i],
|
||||
style=self.header_style,
|
||||
css_styles=getattr(self.styler, "ctx_index", None),
|
||||
css_row=i,
|
||||
css_col=gcolidx,
|
||||
css_converter=self.style_converter,
|
||||
mergestart=mergestart,
|
||||
mergeend=mergeend,
|
||||
)
|
||||
gcolidx += 1
|
||||
|
||||
else:
|
||||
# Format hierarchical rows with non-merged values.
|
||||
for indexcolvals in zip(*self.df.index):
|
||||
for idx, indexcolval in enumerate(indexcolvals):
|
||||
yield CssExcelCell(
|
||||
row=self.rowcounter + idx,
|
||||
col=gcolidx,
|
||||
val=indexcolval,
|
||||
style=self.header_style,
|
||||
css_styles=getattr(self.styler, "ctx_index", None),
|
||||
css_row=idx,
|
||||
css_col=gcolidx,
|
||||
css_converter=self.style_converter,
|
||||
)
|
||||
gcolidx += 1
|
||||
|
||||
yield from self._generate_body(gcolidx)
|
||||
|
||||
@property
|
||||
def _has_aliases(self) -> bool:
|
||||
"""Whether the aliases for column names are present."""
|
||||
return is_list_like(self.header)
|
||||
|
||||
def _generate_body(self, coloffset: int) -> Iterable[ExcelCell]:
|
||||
# Write the body of the frame data series by series.
|
||||
for colidx in range(len(self.columns)):
|
||||
series = self.df.iloc[:, colidx]
|
||||
for i, val in enumerate(series):
|
||||
yield CssExcelCell(
|
||||
row=self.rowcounter + i,
|
||||
col=colidx + coloffset,
|
||||
val=val,
|
||||
style=None,
|
||||
css_styles=getattr(self.styler, "ctx", None),
|
||||
css_row=i,
|
||||
css_col=colidx,
|
||||
css_converter=self.style_converter,
|
||||
)
|
||||
|
||||
def get_formatted_cells(self) -> Iterable[ExcelCell]:
|
||||
for cell in itertools.chain(self._format_header(), self._format_body()):
|
||||
cell.val = self._format_value(cell.val)
|
||||
yield cell
|
||||
|
||||
@doc(storage_options=_shared_docs["storage_options"])
|
||||
def write(
|
||||
self,
|
||||
writer: FilePath | WriteExcelBuffer | ExcelWriter,
|
||||
sheet_name: str = "Sheet1",
|
||||
startrow: int = 0,
|
||||
startcol: int = 0,
|
||||
freeze_panes: tuple[int, int] | None = None,
|
||||
engine: str | None = None,
|
||||
storage_options: StorageOptions | None = None,
|
||||
engine_kwargs: dict | None = None,
|
||||
) -> None:
|
||||
"""
|
||||
writer : path-like, file-like, or ExcelWriter object
|
||||
File path or existing ExcelWriter
|
||||
sheet_name : str, default 'Sheet1'
|
||||
Name of sheet which will contain DataFrame
|
||||
startrow :
|
||||
upper left cell row to dump data frame
|
||||
startcol :
|
||||
upper left cell column to dump data frame
|
||||
freeze_panes : tuple of integer (length 2), default None
|
||||
Specifies the one-based bottommost row and rightmost column that
|
||||
is to be frozen
|
||||
engine : string, default None
|
||||
write engine to use if writer is a path - you can also set this
|
||||
via the options ``io.excel.xlsx.writer``,
|
||||
or ``io.excel.xlsm.writer``.
|
||||
|
||||
{storage_options}
|
||||
|
||||
engine_kwargs: dict, optional
|
||||
Arbitrary keyword arguments passed to excel engine.
|
||||
"""
|
||||
from pandas.io.excel import ExcelWriter
|
||||
|
||||
num_rows, num_cols = self.df.shape
|
||||
if num_rows > self.max_rows or num_cols > self.max_cols:
|
||||
raise ValueError(
|
||||
f"This sheet is too large! Your sheet size is: {num_rows}, {num_cols} "
|
||||
f"Max sheet size is: {self.max_rows}, {self.max_cols}"
|
||||
)
|
||||
|
||||
if engine_kwargs is None:
|
||||
engine_kwargs = {}
|
||||
|
||||
formatted_cells = self.get_formatted_cells()
|
||||
if isinstance(writer, ExcelWriter):
|
||||
need_save = False
|
||||
else:
|
||||
writer = ExcelWriter(
|
||||
writer,
|
||||
engine=engine,
|
||||
storage_options=storage_options,
|
||||
engine_kwargs=engine_kwargs,
|
||||
)
|
||||
need_save = True
|
||||
|
||||
try:
|
||||
writer._write_cells(
|
||||
formatted_cells,
|
||||
sheet_name,
|
||||
startrow=startrow,
|
||||
startcol=startcol,
|
||||
freeze_panes=freeze_panes,
|
||||
)
|
||||
finally:
|
||||
# make sure to close opened file handles
|
||||
if need_save:
|
||||
writer.close()
|
2058
venv/lib/python3.12/site-packages/pandas/io/formats/format.py
Normal file
2058
venv/lib/python3.12/site-packages/pandas/io/formats/format.py
Normal file
File diff suppressed because it is too large
Load Diff
646
venv/lib/python3.12/site-packages/pandas/io/formats/html.py
Normal file
646
venv/lib/python3.12/site-packages/pandas/io/formats/html.py
Normal file
@ -0,0 +1,646 @@
|
||||
"""
|
||||
Module for formatting output data in HTML.
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from textwrap import dedent
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Final,
|
||||
cast,
|
||||
)
|
||||
|
||||
from pandas._config import get_option
|
||||
|
||||
from pandas._libs import lib
|
||||
|
||||
from pandas import (
|
||||
MultiIndex,
|
||||
option_context,
|
||||
)
|
||||
|
||||
from pandas.io.common import is_url
|
||||
from pandas.io.formats.format import (
|
||||
DataFrameFormatter,
|
||||
get_level_lengths,
|
||||
)
|
||||
from pandas.io.formats.printing import pprint_thing
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import (
|
||||
Hashable,
|
||||
Iterable,
|
||||
Mapping,
|
||||
)
|
||||
|
||||
|
||||
class HTMLFormatter:
|
||||
"""
|
||||
Internal class for formatting output data in html.
|
||||
This class is intended for shared functionality between
|
||||
DataFrame.to_html() and DataFrame._repr_html_().
|
||||
Any logic in common with other output formatting methods
|
||||
should ideally be inherited from classes in format.py
|
||||
and this class responsible for only producing html markup.
|
||||
"""
|
||||
|
||||
indent_delta: Final = 2
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
formatter: DataFrameFormatter,
|
||||
classes: str | list[str] | tuple[str, ...] | None = None,
|
||||
border: int | bool | None = None,
|
||||
table_id: str | None = None,
|
||||
render_links: bool = False,
|
||||
) -> None:
|
||||
self.fmt = formatter
|
||||
self.classes = classes
|
||||
|
||||
self.frame = self.fmt.frame
|
||||
self.columns = self.fmt.tr_frame.columns
|
||||
self.elements: list[str] = []
|
||||
self.bold_rows = self.fmt.bold_rows
|
||||
self.escape = self.fmt.escape
|
||||
self.show_dimensions = self.fmt.show_dimensions
|
||||
if border is None or border is True:
|
||||
border = cast(int, get_option("display.html.border"))
|
||||
elif not border:
|
||||
border = None
|
||||
|
||||
self.border = border
|
||||
self.table_id = table_id
|
||||
self.render_links = render_links
|
||||
|
||||
self.col_space = {}
|
||||
is_multi_index = isinstance(self.columns, MultiIndex)
|
||||
for column, value in self.fmt.col_space.items():
|
||||
col_space_value = f"{value}px" if isinstance(value, int) else value
|
||||
self.col_space[column] = col_space_value
|
||||
# GH 53885: Handling case where column is index
|
||||
# Flatten the data in the multi index and add in the map
|
||||
if is_multi_index and isinstance(column, tuple):
|
||||
for column_index in column:
|
||||
self.col_space[str(column_index)] = col_space_value
|
||||
|
||||
def to_string(self) -> str:
|
||||
lines = self.render()
|
||||
if any(isinstance(x, str) for x in lines):
|
||||
lines = [str(x) for x in lines]
|
||||
return "\n".join(lines)
|
||||
|
||||
def render(self) -> list[str]:
|
||||
self._write_table()
|
||||
|
||||
if self.should_show_dimensions:
|
||||
by = chr(215) # × # noqa: RUF003
|
||||
self.write(
|
||||
f"<p>{len(self.frame)} rows {by} {len(self.frame.columns)} columns</p>"
|
||||
)
|
||||
|
||||
return self.elements
|
||||
|
||||
@property
|
||||
def should_show_dimensions(self) -> bool:
|
||||
return self.fmt.should_show_dimensions
|
||||
|
||||
@property
|
||||
def show_row_idx_names(self) -> bool:
|
||||
return self.fmt.show_row_idx_names
|
||||
|
||||
@property
|
||||
def show_col_idx_names(self) -> bool:
|
||||
return self.fmt.show_col_idx_names
|
||||
|
||||
@property
|
||||
def row_levels(self) -> int:
|
||||
if self.fmt.index:
|
||||
# showing (row) index
|
||||
return self.frame.index.nlevels
|
||||
elif self.show_col_idx_names:
|
||||
# see gh-22579
|
||||
# Column misalignment also occurs for
|
||||
# a standard index when the columns index is named.
|
||||
# If the row index is not displayed a column of
|
||||
# blank cells need to be included before the DataFrame values.
|
||||
return 1
|
||||
# not showing (row) index
|
||||
return 0
|
||||
|
||||
def _get_columns_formatted_values(self) -> Iterable:
|
||||
return self.columns
|
||||
|
||||
@property
|
||||
def is_truncated(self) -> bool:
|
||||
return self.fmt.is_truncated
|
||||
|
||||
@property
|
||||
def ncols(self) -> int:
|
||||
return len(self.fmt.tr_frame.columns)
|
||||
|
||||
def write(self, s: Any, indent: int = 0) -> None:
|
||||
rs = pprint_thing(s)
|
||||
self.elements.append(" " * indent + rs)
|
||||
|
||||
def write_th(
|
||||
self, s: Any, header: bool = False, indent: int = 0, tags: str | None = None
|
||||
) -> None:
|
||||
"""
|
||||
Method for writing a formatted <th> cell.
|
||||
|
||||
If col_space is set on the formatter then that is used for
|
||||
the value of min-width.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
s : object
|
||||
The data to be written inside the cell.
|
||||
header : bool, default False
|
||||
Set to True if the <th> is for use inside <thead>. This will
|
||||
cause min-width to be set if there is one.
|
||||
indent : int, default 0
|
||||
The indentation level of the cell.
|
||||
tags : str, default None
|
||||
Tags to include in the cell.
|
||||
|
||||
Returns
|
||||
-------
|
||||
A written <th> cell.
|
||||
"""
|
||||
col_space = self.col_space.get(s, None)
|
||||
|
||||
if header and col_space is not None:
|
||||
tags = tags or ""
|
||||
tags += f'style="min-width: {col_space};"'
|
||||
|
||||
self._write_cell(s, kind="th", indent=indent, tags=tags)
|
||||
|
||||
def write_td(self, s: Any, indent: int = 0, tags: str | None = None) -> None:
|
||||
self._write_cell(s, kind="td", indent=indent, tags=tags)
|
||||
|
||||
def _write_cell(
|
||||
self, s: Any, kind: str = "td", indent: int = 0, tags: str | None = None
|
||||
) -> None:
|
||||
if tags is not None:
|
||||
start_tag = f"<{kind} {tags}>"
|
||||
else:
|
||||
start_tag = f"<{kind}>"
|
||||
|
||||
if self.escape:
|
||||
# escape & first to prevent double escaping of &
|
||||
esc = {"&": r"&", "<": r"<", ">": r">"}
|
||||
else:
|
||||
esc = {}
|
||||
|
||||
rs = pprint_thing(s, escape_chars=esc).strip()
|
||||
|
||||
if self.render_links and is_url(rs):
|
||||
rs_unescaped = pprint_thing(s, escape_chars={}).strip()
|
||||
start_tag += f'<a href="{rs_unescaped}" target="_blank">'
|
||||
end_a = "</a>"
|
||||
else:
|
||||
end_a = ""
|
||||
|
||||
self.write(f"{start_tag}{rs}{end_a}</{kind}>", indent)
|
||||
|
||||
def write_tr(
|
||||
self,
|
||||
line: Iterable,
|
||||
indent: int = 0,
|
||||
indent_delta: int = 0,
|
||||
header: bool = False,
|
||||
align: str | None = None,
|
||||
tags: dict[int, str] | None = None,
|
||||
nindex_levels: int = 0,
|
||||
) -> None:
|
||||
if tags is None:
|
||||
tags = {}
|
||||
|
||||
if align is None:
|
||||
self.write("<tr>", indent)
|
||||
else:
|
||||
self.write(f'<tr style="text-align: {align};">', indent)
|
||||
indent += indent_delta
|
||||
|
||||
for i, s in enumerate(line):
|
||||
val_tag = tags.get(i, None)
|
||||
if header or (self.bold_rows and i < nindex_levels):
|
||||
self.write_th(s, indent=indent, header=header, tags=val_tag)
|
||||
else:
|
||||
self.write_td(s, indent, tags=val_tag)
|
||||
|
||||
indent -= indent_delta
|
||||
self.write("</tr>", indent)
|
||||
|
||||
def _write_table(self, indent: int = 0) -> None:
|
||||
_classes = ["dataframe"] # Default class.
|
||||
use_mathjax = get_option("display.html.use_mathjax")
|
||||
if not use_mathjax:
|
||||
_classes.append("tex2jax_ignore")
|
||||
if self.classes is not None:
|
||||
if isinstance(self.classes, str):
|
||||
self.classes = self.classes.split()
|
||||
if not isinstance(self.classes, (list, tuple)):
|
||||
raise TypeError(
|
||||
"classes must be a string, list, "
|
||||
f"or tuple, not {type(self.classes)}"
|
||||
)
|
||||
_classes.extend(self.classes)
|
||||
|
||||
if self.table_id is None:
|
||||
id_section = ""
|
||||
else:
|
||||
id_section = f' id="{self.table_id}"'
|
||||
|
||||
if self.border is None:
|
||||
border_attr = ""
|
||||
else:
|
||||
border_attr = f' border="{self.border}"'
|
||||
|
||||
self.write(
|
||||
f'<table{border_attr} class="{" ".join(_classes)}"{id_section}>',
|
||||
indent,
|
||||
)
|
||||
|
||||
if self.fmt.header or self.show_row_idx_names:
|
||||
self._write_header(indent + self.indent_delta)
|
||||
|
||||
self._write_body(indent + self.indent_delta)
|
||||
|
||||
self.write("</table>", indent)
|
||||
|
||||
def _write_col_header(self, indent: int) -> None:
|
||||
row: list[Hashable]
|
||||
is_truncated_horizontally = self.fmt.is_truncated_horizontally
|
||||
if isinstance(self.columns, MultiIndex):
|
||||
template = 'colspan="{span:d}" halign="left"'
|
||||
|
||||
sentinel: lib.NoDefault | bool
|
||||
if self.fmt.sparsify:
|
||||
# GH3547
|
||||
sentinel = lib.no_default
|
||||
else:
|
||||
sentinel = False
|
||||
levels = self.columns._format_multi(sparsify=sentinel, include_names=False)
|
||||
level_lengths = get_level_lengths(levels, sentinel)
|
||||
inner_lvl = len(level_lengths) - 1
|
||||
for lnum, (records, values) in enumerate(zip(level_lengths, levels)):
|
||||
if is_truncated_horizontally:
|
||||
# modify the header lines
|
||||
ins_col = self.fmt.tr_col_num
|
||||
if self.fmt.sparsify:
|
||||
recs_new = {}
|
||||
# Increment tags after ... col.
|
||||
for tag, span in list(records.items()):
|
||||
if tag >= ins_col:
|
||||
recs_new[tag + 1] = span
|
||||
elif tag + span > ins_col:
|
||||
recs_new[tag] = span + 1
|
||||
if lnum == inner_lvl:
|
||||
values = (
|
||||
values[:ins_col] + ("...",) + values[ins_col:]
|
||||
)
|
||||
else:
|
||||
# sparse col headers do not receive a ...
|
||||
values = (
|
||||
values[:ins_col]
|
||||
+ (values[ins_col - 1],)
|
||||
+ values[ins_col:]
|
||||
)
|
||||
else:
|
||||
recs_new[tag] = span
|
||||
# if ins_col lies between tags, all col headers
|
||||
# get ...
|
||||
if tag + span == ins_col:
|
||||
recs_new[ins_col] = 1
|
||||
values = values[:ins_col] + ("...",) + values[ins_col:]
|
||||
records = recs_new
|
||||
inner_lvl = len(level_lengths) - 1
|
||||
if lnum == inner_lvl:
|
||||
records[ins_col] = 1
|
||||
else:
|
||||
recs_new = {}
|
||||
for tag, span in list(records.items()):
|
||||
if tag >= ins_col:
|
||||
recs_new[tag + 1] = span
|
||||
else:
|
||||
recs_new[tag] = span
|
||||
recs_new[ins_col] = 1
|
||||
records = recs_new
|
||||
values = values[:ins_col] + ["..."] + values[ins_col:]
|
||||
|
||||
# see gh-22579
|
||||
# Column Offset Bug with to_html(index=False) with
|
||||
# MultiIndex Columns and Index.
|
||||
# Initially fill row with blank cells before column names.
|
||||
# TODO: Refactor to remove code duplication with code
|
||||
# block below for standard columns index.
|
||||
row = [""] * (self.row_levels - 1)
|
||||
if self.fmt.index or self.show_col_idx_names:
|
||||
# see gh-22747
|
||||
# If to_html(index_names=False) do not show columns
|
||||
# index names.
|
||||
# TODO: Refactor to use _get_column_name_list from
|
||||
# DataFrameFormatter class and create a
|
||||
# _get_formatted_column_labels function for code
|
||||
# parity with DataFrameFormatter class.
|
||||
if self.fmt.show_index_names:
|
||||
name = self.columns.names[lnum]
|
||||
row.append(pprint_thing(name or ""))
|
||||
else:
|
||||
row.append("")
|
||||
|
||||
tags = {}
|
||||
j = len(row)
|
||||
for i, v in enumerate(values):
|
||||
if i in records:
|
||||
if records[i] > 1:
|
||||
tags[j] = template.format(span=records[i])
|
||||
else:
|
||||
continue
|
||||
j += 1
|
||||
row.append(v)
|
||||
self.write_tr(row, indent, self.indent_delta, tags=tags, header=True)
|
||||
else:
|
||||
# see gh-22579
|
||||
# Column misalignment also occurs for
|
||||
# a standard index when the columns index is named.
|
||||
# Initially fill row with blank cells before column names.
|
||||
# TODO: Refactor to remove code duplication with code block
|
||||
# above for columns MultiIndex.
|
||||
row = [""] * (self.row_levels - 1)
|
||||
if self.fmt.index or self.show_col_idx_names:
|
||||
# see gh-22747
|
||||
# If to_html(index_names=False) do not show columns
|
||||
# index names.
|
||||
# TODO: Refactor to use _get_column_name_list from
|
||||
# DataFrameFormatter class.
|
||||
if self.fmt.show_index_names:
|
||||
row.append(self.columns.name or "")
|
||||
else:
|
||||
row.append("")
|
||||
row.extend(self._get_columns_formatted_values())
|
||||
align = self.fmt.justify
|
||||
|
||||
if is_truncated_horizontally:
|
||||
ins_col = self.row_levels + self.fmt.tr_col_num
|
||||
row.insert(ins_col, "...")
|
||||
|
||||
self.write_tr(row, indent, self.indent_delta, header=True, align=align)
|
||||
|
||||
def _write_row_header(self, indent: int) -> None:
|
||||
is_truncated_horizontally = self.fmt.is_truncated_horizontally
|
||||
row = [x if x is not None else "" for x in self.frame.index.names] + [""] * (
|
||||
self.ncols + (1 if is_truncated_horizontally else 0)
|
||||
)
|
||||
self.write_tr(row, indent, self.indent_delta, header=True)
|
||||
|
||||
def _write_header(self, indent: int) -> None:
|
||||
self.write("<thead>", indent)
|
||||
|
||||
if self.fmt.header:
|
||||
self._write_col_header(indent + self.indent_delta)
|
||||
|
||||
if self.show_row_idx_names:
|
||||
self._write_row_header(indent + self.indent_delta)
|
||||
|
||||
self.write("</thead>", indent)
|
||||
|
||||
def _get_formatted_values(self) -> dict[int, list[str]]:
|
||||
with option_context("display.max_colwidth", None):
|
||||
fmt_values = {i: self.fmt.format_col(i) for i in range(self.ncols)}
|
||||
return fmt_values
|
||||
|
||||
def _write_body(self, indent: int) -> None:
|
||||
self.write("<tbody>", indent)
|
||||
fmt_values = self._get_formatted_values()
|
||||
|
||||
# write values
|
||||
if self.fmt.index and isinstance(self.frame.index, MultiIndex):
|
||||
self._write_hierarchical_rows(fmt_values, indent + self.indent_delta)
|
||||
else:
|
||||
self._write_regular_rows(fmt_values, indent + self.indent_delta)
|
||||
|
||||
self.write("</tbody>", indent)
|
||||
|
||||
def _write_regular_rows(
|
||||
self, fmt_values: Mapping[int, list[str]], indent: int
|
||||
) -> None:
|
||||
is_truncated_horizontally = self.fmt.is_truncated_horizontally
|
||||
is_truncated_vertically = self.fmt.is_truncated_vertically
|
||||
|
||||
nrows = len(self.fmt.tr_frame)
|
||||
|
||||
if self.fmt.index:
|
||||
fmt = self.fmt._get_formatter("__index__")
|
||||
if fmt is not None:
|
||||
index_values = self.fmt.tr_frame.index.map(fmt)
|
||||
else:
|
||||
# only reached with non-Multi index
|
||||
index_values = self.fmt.tr_frame.index._format_flat(include_name=False)
|
||||
|
||||
row: list[str] = []
|
||||
for i in range(nrows):
|
||||
if is_truncated_vertically and i == (self.fmt.tr_row_num):
|
||||
str_sep_row = ["..."] * len(row)
|
||||
self.write_tr(
|
||||
str_sep_row,
|
||||
indent,
|
||||
self.indent_delta,
|
||||
tags=None,
|
||||
nindex_levels=self.row_levels,
|
||||
)
|
||||
|
||||
row = []
|
||||
if self.fmt.index:
|
||||
row.append(index_values[i])
|
||||
# see gh-22579
|
||||
# Column misalignment also occurs for
|
||||
# a standard index when the columns index is named.
|
||||
# Add blank cell before data cells.
|
||||
elif self.show_col_idx_names:
|
||||
row.append("")
|
||||
row.extend(fmt_values[j][i] for j in range(self.ncols))
|
||||
|
||||
if is_truncated_horizontally:
|
||||
dot_col_ix = self.fmt.tr_col_num + self.row_levels
|
||||
row.insert(dot_col_ix, "...")
|
||||
self.write_tr(
|
||||
row, indent, self.indent_delta, tags=None, nindex_levels=self.row_levels
|
||||
)
|
||||
|
||||
def _write_hierarchical_rows(
|
||||
self, fmt_values: Mapping[int, list[str]], indent: int
|
||||
) -> None:
|
||||
template = 'rowspan="{span}" valign="top"'
|
||||
|
||||
is_truncated_horizontally = self.fmt.is_truncated_horizontally
|
||||
is_truncated_vertically = self.fmt.is_truncated_vertically
|
||||
frame = self.fmt.tr_frame
|
||||
nrows = len(frame)
|
||||
|
||||
assert isinstance(frame.index, MultiIndex)
|
||||
idx_values = frame.index._format_multi(sparsify=False, include_names=False)
|
||||
idx_values = list(zip(*idx_values))
|
||||
|
||||
if self.fmt.sparsify:
|
||||
# GH3547
|
||||
sentinel = lib.no_default
|
||||
levels = frame.index._format_multi(sparsify=sentinel, include_names=False)
|
||||
|
||||
level_lengths = get_level_lengths(levels, sentinel)
|
||||
inner_lvl = len(level_lengths) - 1
|
||||
if is_truncated_vertically:
|
||||
# Insert ... row and adjust idx_values and
|
||||
# level_lengths to take this into account.
|
||||
ins_row = self.fmt.tr_row_num
|
||||
inserted = False
|
||||
for lnum, records in enumerate(level_lengths):
|
||||
rec_new = {}
|
||||
for tag, span in list(records.items()):
|
||||
if tag >= ins_row:
|
||||
rec_new[tag + 1] = span
|
||||
elif tag + span > ins_row:
|
||||
rec_new[tag] = span + 1
|
||||
|
||||
# GH 14882 - Make sure insertion done once
|
||||
if not inserted:
|
||||
dot_row = list(idx_values[ins_row - 1])
|
||||
dot_row[-1] = "..."
|
||||
idx_values.insert(ins_row, tuple(dot_row))
|
||||
inserted = True
|
||||
else:
|
||||
dot_row = list(idx_values[ins_row])
|
||||
dot_row[inner_lvl - lnum] = "..."
|
||||
idx_values[ins_row] = tuple(dot_row)
|
||||
else:
|
||||
rec_new[tag] = span
|
||||
# If ins_row lies between tags, all cols idx cols
|
||||
# receive ...
|
||||
if tag + span == ins_row:
|
||||
rec_new[ins_row] = 1
|
||||
if lnum == 0:
|
||||
idx_values.insert(
|
||||
ins_row, tuple(["..."] * len(level_lengths))
|
||||
)
|
||||
|
||||
# GH 14882 - Place ... in correct level
|
||||
elif inserted:
|
||||
dot_row = list(idx_values[ins_row])
|
||||
dot_row[inner_lvl - lnum] = "..."
|
||||
idx_values[ins_row] = tuple(dot_row)
|
||||
level_lengths[lnum] = rec_new
|
||||
|
||||
level_lengths[inner_lvl][ins_row] = 1
|
||||
for ix_col in fmt_values:
|
||||
fmt_values[ix_col].insert(ins_row, "...")
|
||||
nrows += 1
|
||||
|
||||
for i in range(nrows):
|
||||
row = []
|
||||
tags = {}
|
||||
|
||||
sparse_offset = 0
|
||||
j = 0
|
||||
for records, v in zip(level_lengths, idx_values[i]):
|
||||
if i in records:
|
||||
if records[i] > 1:
|
||||
tags[j] = template.format(span=records[i])
|
||||
else:
|
||||
sparse_offset += 1
|
||||
continue
|
||||
|
||||
j += 1
|
||||
row.append(v)
|
||||
|
||||
row.extend(fmt_values[j][i] for j in range(self.ncols))
|
||||
if is_truncated_horizontally:
|
||||
row.insert(
|
||||
self.row_levels - sparse_offset + self.fmt.tr_col_num, "..."
|
||||
)
|
||||
self.write_tr(
|
||||
row,
|
||||
indent,
|
||||
self.indent_delta,
|
||||
tags=tags,
|
||||
nindex_levels=len(levels) - sparse_offset,
|
||||
)
|
||||
else:
|
||||
row = []
|
||||
for i in range(len(frame)):
|
||||
if is_truncated_vertically and i == (self.fmt.tr_row_num):
|
||||
str_sep_row = ["..."] * len(row)
|
||||
self.write_tr(
|
||||
str_sep_row,
|
||||
indent,
|
||||
self.indent_delta,
|
||||
tags=None,
|
||||
nindex_levels=self.row_levels,
|
||||
)
|
||||
|
||||
idx_values = list(
|
||||
zip(*frame.index._format_multi(sparsify=False, include_names=False))
|
||||
)
|
||||
row = []
|
||||
row.extend(idx_values[i])
|
||||
row.extend(fmt_values[j][i] for j in range(self.ncols))
|
||||
if is_truncated_horizontally:
|
||||
row.insert(self.row_levels + self.fmt.tr_col_num, "...")
|
||||
self.write_tr(
|
||||
row,
|
||||
indent,
|
||||
self.indent_delta,
|
||||
tags=None,
|
||||
nindex_levels=frame.index.nlevels,
|
||||
)
|
||||
|
||||
|
||||
class NotebookFormatter(HTMLFormatter):
|
||||
"""
|
||||
Internal class for formatting output data in html for display in Jupyter
|
||||
Notebooks. This class is intended for functionality specific to
|
||||
DataFrame._repr_html_() and DataFrame.to_html(notebook=True)
|
||||
"""
|
||||
|
||||
def _get_formatted_values(self) -> dict[int, list[str]]:
|
||||
return {i: self.fmt.format_col(i) for i in range(self.ncols)}
|
||||
|
||||
def _get_columns_formatted_values(self) -> list[str]:
|
||||
# only reached with non-Multi Index
|
||||
return self.columns._format_flat(include_name=False)
|
||||
|
||||
def write_style(self) -> None:
|
||||
# We use the "scoped" attribute here so that the desired
|
||||
# style properties for the data frame are not then applied
|
||||
# throughout the entire notebook.
|
||||
template_first = """\
|
||||
<style scoped>"""
|
||||
template_last = """\
|
||||
</style>"""
|
||||
template_select = """\
|
||||
.dataframe %s {
|
||||
%s: %s;
|
||||
}"""
|
||||
element_props = [
|
||||
("tbody tr th:only-of-type", "vertical-align", "middle"),
|
||||
("tbody tr th", "vertical-align", "top"),
|
||||
]
|
||||
if isinstance(self.columns, MultiIndex):
|
||||
element_props.append(("thead tr th", "text-align", "left"))
|
||||
if self.show_row_idx_names:
|
||||
element_props.append(
|
||||
("thead tr:last-of-type th", "text-align", "right")
|
||||
)
|
||||
else:
|
||||
element_props.append(("thead th", "text-align", "right"))
|
||||
template_mid = "\n\n".join(template_select % t for t in element_props)
|
||||
template = dedent(f"{template_first}\n{template_mid}\n{template_last}")
|
||||
self.write(template)
|
||||
|
||||
def render(self) -> list[str]:
|
||||
self.write("<div>")
|
||||
self.write_style()
|
||||
super().render()
|
||||
self.write("</div>")
|
||||
return self.elements
|
1101
venv/lib/python3.12/site-packages/pandas/io/formats/info.py
Normal file
1101
venv/lib/python3.12/site-packages/pandas/io/formats/info.py
Normal file
File diff suppressed because it is too large
Load Diff
572
venv/lib/python3.12/site-packages/pandas/io/formats/printing.py
Normal file
572
venv/lib/python3.12/site-packages/pandas/io/formats/printing.py
Normal file
@ -0,0 +1,572 @@
|
||||
"""
|
||||
Printing tools.
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from collections.abc import (
|
||||
Iterable,
|
||||
Mapping,
|
||||
Sequence,
|
||||
)
|
||||
import sys
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
TypeVar,
|
||||
Union,
|
||||
)
|
||||
from unicodedata import east_asian_width
|
||||
|
||||
from pandas._config import get_option
|
||||
|
||||
from pandas.core.dtypes.inference import is_sequence
|
||||
|
||||
from pandas.io.formats.console import get_console_size
|
||||
|
||||
EscapeChars = Union[Mapping[str, str], Iterable[str]]
|
||||
_KT = TypeVar("_KT")
|
||||
_VT = TypeVar("_VT")
|
||||
|
||||
|
||||
def adjoin(space: int, *lists: list[str], **kwargs) -> str:
|
||||
"""
|
||||
Glues together two sets of strings using the amount of space requested.
|
||||
The idea is to prettify.
|
||||
|
||||
----------
|
||||
space : int
|
||||
number of spaces for padding
|
||||
lists : str
|
||||
list of str which being joined
|
||||
strlen : callable
|
||||
function used to calculate the length of each str. Needed for unicode
|
||||
handling.
|
||||
justfunc : callable
|
||||
function used to justify str. Needed for unicode handling.
|
||||
"""
|
||||
strlen = kwargs.pop("strlen", len)
|
||||
justfunc = kwargs.pop("justfunc", _adj_justify)
|
||||
|
||||
newLists = []
|
||||
lengths = [max(map(strlen, x)) + space for x in lists[:-1]]
|
||||
# not the last one
|
||||
lengths.append(max(map(len, lists[-1])))
|
||||
maxLen = max(map(len, lists))
|
||||
for i, lst in enumerate(lists):
|
||||
nl = justfunc(lst, lengths[i], mode="left")
|
||||
nl = ([" " * lengths[i]] * (maxLen - len(lst))) + nl
|
||||
newLists.append(nl)
|
||||
toJoin = zip(*newLists)
|
||||
return "\n".join("".join(lines) for lines in toJoin)
|
||||
|
||||
|
||||
def _adj_justify(texts: Iterable[str], max_len: int, mode: str = "right") -> list[str]:
|
||||
"""
|
||||
Perform ljust, center, rjust against string or list-like
|
||||
"""
|
||||
if mode == "left":
|
||||
return [x.ljust(max_len) for x in texts]
|
||||
elif mode == "center":
|
||||
return [x.center(max_len) for x in texts]
|
||||
else:
|
||||
return [x.rjust(max_len) for x in texts]
|
||||
|
||||
|
||||
# Unicode consolidation
|
||||
# ---------------------
|
||||
#
|
||||
# pprinting utility functions for generating Unicode text or
|
||||
# bytes(3.x)/str(2.x) representations of objects.
|
||||
# Try to use these as much as possible rather than rolling your own.
|
||||
#
|
||||
# When to use
|
||||
# -----------
|
||||
#
|
||||
# 1) If you're writing code internal to pandas (no I/O directly involved),
|
||||
# use pprint_thing().
|
||||
#
|
||||
# It will always return unicode text which can handled by other
|
||||
# parts of the package without breakage.
|
||||
#
|
||||
# 2) if you need to write something out to file, use
|
||||
# pprint_thing_encoded(encoding).
|
||||
#
|
||||
# If no encoding is specified, it defaults to utf-8. Since encoding pure
|
||||
# ascii with utf-8 is a no-op you can safely use the default utf-8 if you're
|
||||
# working with straight ascii.
|
||||
|
||||
|
||||
def _pprint_seq(
|
||||
seq: Sequence, _nest_lvl: int = 0, max_seq_items: int | None = None, **kwds
|
||||
) -> str:
|
||||
"""
|
||||
internal. pprinter for iterables. you should probably use pprint_thing()
|
||||
rather than calling this directly.
|
||||
|
||||
bounds length of printed sequence, depending on options
|
||||
"""
|
||||
if isinstance(seq, set):
|
||||
fmt = "{{{body}}}"
|
||||
else:
|
||||
fmt = "[{body}]" if hasattr(seq, "__setitem__") else "({body})"
|
||||
|
||||
if max_seq_items is False:
|
||||
nitems = len(seq)
|
||||
else:
|
||||
nitems = max_seq_items or get_option("max_seq_items") or len(seq)
|
||||
|
||||
s = iter(seq)
|
||||
# handle sets, no slicing
|
||||
r = [
|
||||
pprint_thing(next(s), _nest_lvl + 1, max_seq_items=max_seq_items, **kwds)
|
||||
for i in range(min(nitems, len(seq)))
|
||||
]
|
||||
body = ", ".join(r)
|
||||
|
||||
if nitems < len(seq):
|
||||
body += ", ..."
|
||||
elif isinstance(seq, tuple) and len(seq) == 1:
|
||||
body += ","
|
||||
|
||||
return fmt.format(body=body)
|
||||
|
||||
|
||||
def _pprint_dict(
|
||||
seq: Mapping, _nest_lvl: int = 0, max_seq_items: int | None = None, **kwds
|
||||
) -> str:
|
||||
"""
|
||||
internal. pprinter for iterables. you should probably use pprint_thing()
|
||||
rather than calling this directly.
|
||||
"""
|
||||
fmt = "{{{things}}}"
|
||||
pairs = []
|
||||
|
||||
pfmt = "{key}: {val}"
|
||||
|
||||
if max_seq_items is False:
|
||||
nitems = len(seq)
|
||||
else:
|
||||
nitems = max_seq_items or get_option("max_seq_items") or len(seq)
|
||||
|
||||
for k, v in list(seq.items())[:nitems]:
|
||||
pairs.append(
|
||||
pfmt.format(
|
||||
key=pprint_thing(k, _nest_lvl + 1, max_seq_items=max_seq_items, **kwds),
|
||||
val=pprint_thing(v, _nest_lvl + 1, max_seq_items=max_seq_items, **kwds),
|
||||
)
|
||||
)
|
||||
|
||||
if nitems < len(seq):
|
||||
return fmt.format(things=", ".join(pairs) + ", ...")
|
||||
else:
|
||||
return fmt.format(things=", ".join(pairs))
|
||||
|
||||
|
||||
def pprint_thing(
|
||||
thing: Any,
|
||||
_nest_lvl: int = 0,
|
||||
escape_chars: EscapeChars | None = None,
|
||||
default_escapes: bool = False,
|
||||
quote_strings: bool = False,
|
||||
max_seq_items: int | None = None,
|
||||
) -> str:
|
||||
"""
|
||||
This function is the sanctioned way of converting objects
|
||||
to a string representation and properly handles nested sequences.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
thing : anything to be formatted
|
||||
_nest_lvl : internal use only. pprint_thing() is mutually-recursive
|
||||
with pprint_sequence, this argument is used to keep track of the
|
||||
current nesting level, and limit it.
|
||||
escape_chars : list or dict, optional
|
||||
Characters to escape. If a dict is passed the values are the
|
||||
replacements
|
||||
default_escapes : bool, default False
|
||||
Whether the input escape characters replaces or adds to the defaults
|
||||
max_seq_items : int or None, default None
|
||||
Pass through to other pretty printers to limit sequence printing
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
"""
|
||||
|
||||
def as_escaped_string(
|
||||
thing: Any, escape_chars: EscapeChars | None = escape_chars
|
||||
) -> str:
|
||||
translate = {"\t": r"\t", "\n": r"\n", "\r": r"\r"}
|
||||
if isinstance(escape_chars, dict):
|
||||
if default_escapes:
|
||||
translate.update(escape_chars)
|
||||
else:
|
||||
translate = escape_chars
|
||||
escape_chars = list(escape_chars.keys())
|
||||
else:
|
||||
escape_chars = escape_chars or ()
|
||||
|
||||
result = str(thing)
|
||||
for c in escape_chars:
|
||||
result = result.replace(c, translate[c])
|
||||
return result
|
||||
|
||||
if hasattr(thing, "__next__"):
|
||||
return str(thing)
|
||||
elif isinstance(thing, dict) and _nest_lvl < get_option(
|
||||
"display.pprint_nest_depth"
|
||||
):
|
||||
result = _pprint_dict(
|
||||
thing, _nest_lvl, quote_strings=True, max_seq_items=max_seq_items
|
||||
)
|
||||
elif is_sequence(thing) and _nest_lvl < get_option("display.pprint_nest_depth"):
|
||||
result = _pprint_seq(
|
||||
thing,
|
||||
_nest_lvl,
|
||||
escape_chars=escape_chars,
|
||||
quote_strings=quote_strings,
|
||||
max_seq_items=max_seq_items,
|
||||
)
|
||||
elif isinstance(thing, str) and quote_strings:
|
||||
result = f"'{as_escaped_string(thing)}'"
|
||||
else:
|
||||
result = as_escaped_string(thing)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def pprint_thing_encoded(
|
||||
object, encoding: str = "utf-8", errors: str = "replace"
|
||||
) -> bytes:
|
||||
value = pprint_thing(object) # get unicode representation of object
|
||||
return value.encode(encoding, errors)
|
||||
|
||||
|
||||
def enable_data_resource_formatter(enable: bool) -> None:
|
||||
if "IPython" not in sys.modules:
|
||||
# definitely not in IPython
|
||||
return
|
||||
from IPython import get_ipython
|
||||
|
||||
ip = get_ipython()
|
||||
if ip is None:
|
||||
# still not in IPython
|
||||
return
|
||||
|
||||
formatters = ip.display_formatter.formatters
|
||||
mimetype = "application/vnd.dataresource+json"
|
||||
|
||||
if enable:
|
||||
if mimetype not in formatters:
|
||||
# define tableschema formatter
|
||||
from IPython.core.formatters import BaseFormatter
|
||||
from traitlets import ObjectName
|
||||
|
||||
class TableSchemaFormatter(BaseFormatter):
|
||||
print_method = ObjectName("_repr_data_resource_")
|
||||
_return_type = (dict,)
|
||||
|
||||
# register it:
|
||||
formatters[mimetype] = TableSchemaFormatter()
|
||||
# enable it if it's been disabled:
|
||||
formatters[mimetype].enabled = True
|
||||
# unregister tableschema mime-type
|
||||
elif mimetype in formatters:
|
||||
formatters[mimetype].enabled = False
|
||||
|
||||
|
||||
def default_pprint(thing: Any, max_seq_items: int | None = None) -> str:
|
||||
return pprint_thing(
|
||||
thing,
|
||||
escape_chars=("\t", "\r", "\n"),
|
||||
quote_strings=True,
|
||||
max_seq_items=max_seq_items,
|
||||
)
|
||||
|
||||
|
||||
def format_object_summary(
|
||||
obj,
|
||||
formatter: Callable,
|
||||
is_justify: bool = True,
|
||||
name: str | None = None,
|
||||
indent_for_name: bool = True,
|
||||
line_break_each_value: bool = False,
|
||||
) -> str:
|
||||
"""
|
||||
Return the formatted obj as a unicode string
|
||||
|
||||
Parameters
|
||||
----------
|
||||
obj : object
|
||||
must be iterable and support __getitem__
|
||||
formatter : callable
|
||||
string formatter for an element
|
||||
is_justify : bool
|
||||
should justify the display
|
||||
name : name, optional
|
||||
defaults to the class name of the obj
|
||||
indent_for_name : bool, default True
|
||||
Whether subsequent lines should be indented to
|
||||
align with the name.
|
||||
line_break_each_value : bool, default False
|
||||
If True, inserts a line break for each value of ``obj``.
|
||||
If False, only break lines when the a line of values gets wider
|
||||
than the display width.
|
||||
|
||||
Returns
|
||||
-------
|
||||
summary string
|
||||
"""
|
||||
display_width, _ = get_console_size()
|
||||
if display_width is None:
|
||||
display_width = get_option("display.width") or 80
|
||||
if name is None:
|
||||
name = type(obj).__name__
|
||||
|
||||
if indent_for_name:
|
||||
name_len = len(name)
|
||||
space1 = f'\n{(" " * (name_len + 1))}'
|
||||
space2 = f'\n{(" " * (name_len + 2))}'
|
||||
else:
|
||||
space1 = "\n"
|
||||
space2 = "\n " # space for the opening '['
|
||||
|
||||
n = len(obj)
|
||||
if line_break_each_value:
|
||||
# If we want to vertically align on each value of obj, we need to
|
||||
# separate values by a line break and indent the values
|
||||
sep = ",\n " + " " * len(name)
|
||||
else:
|
||||
sep = ","
|
||||
max_seq_items = get_option("display.max_seq_items") or n
|
||||
|
||||
# are we a truncated display
|
||||
is_truncated = n > max_seq_items
|
||||
|
||||
# adj can optionally handle unicode eastern asian width
|
||||
adj = get_adjustment()
|
||||
|
||||
def _extend_line(
|
||||
s: str, line: str, value: str, display_width: int, next_line_prefix: str
|
||||
) -> tuple[str, str]:
|
||||
if adj.len(line.rstrip()) + adj.len(value.rstrip()) >= display_width:
|
||||
s += line.rstrip()
|
||||
line = next_line_prefix
|
||||
line += value
|
||||
return s, line
|
||||
|
||||
def best_len(values: list[str]) -> int:
|
||||
if values:
|
||||
return max(adj.len(x) for x in values)
|
||||
else:
|
||||
return 0
|
||||
|
||||
close = ", "
|
||||
|
||||
if n == 0:
|
||||
summary = f"[]{close}"
|
||||
elif n == 1 and not line_break_each_value:
|
||||
first = formatter(obj[0])
|
||||
summary = f"[{first}]{close}"
|
||||
elif n == 2 and not line_break_each_value:
|
||||
first = formatter(obj[0])
|
||||
last = formatter(obj[-1])
|
||||
summary = f"[{first}, {last}]{close}"
|
||||
else:
|
||||
if max_seq_items == 1:
|
||||
# If max_seq_items=1 show only last element
|
||||
head = []
|
||||
tail = [formatter(x) for x in obj[-1:]]
|
||||
elif n > max_seq_items:
|
||||
n = min(max_seq_items // 2, 10)
|
||||
head = [formatter(x) for x in obj[:n]]
|
||||
tail = [formatter(x) for x in obj[-n:]]
|
||||
else:
|
||||
head = []
|
||||
tail = [formatter(x) for x in obj]
|
||||
|
||||
# adjust all values to max length if needed
|
||||
if is_justify:
|
||||
if line_break_each_value:
|
||||
# Justify each string in the values of head and tail, so the
|
||||
# strings will right align when head and tail are stacked
|
||||
# vertically.
|
||||
head, tail = _justify(head, tail)
|
||||
elif is_truncated or not (
|
||||
len(", ".join(head)) < display_width
|
||||
and len(", ".join(tail)) < display_width
|
||||
):
|
||||
# Each string in head and tail should align with each other
|
||||
max_length = max(best_len(head), best_len(tail))
|
||||
head = [x.rjust(max_length) for x in head]
|
||||
tail = [x.rjust(max_length) for x in tail]
|
||||
# If we are not truncated and we are only a single
|
||||
# line, then don't justify
|
||||
|
||||
if line_break_each_value:
|
||||
# Now head and tail are of type List[Tuple[str]]. Below we
|
||||
# convert them into List[str], so there will be one string per
|
||||
# value. Also truncate items horizontally if wider than
|
||||
# max_space
|
||||
max_space = display_width - len(space2)
|
||||
value = tail[0]
|
||||
max_items = 1
|
||||
for num_items in reversed(range(1, len(value) + 1)):
|
||||
pprinted_seq = _pprint_seq(value, max_seq_items=num_items)
|
||||
if len(pprinted_seq) < max_space:
|
||||
max_items = num_items
|
||||
break
|
||||
head = [_pprint_seq(x, max_seq_items=max_items) for x in head]
|
||||
tail = [_pprint_seq(x, max_seq_items=max_items) for x in tail]
|
||||
|
||||
summary = ""
|
||||
line = space2
|
||||
|
||||
for head_value in head:
|
||||
word = head_value + sep + " "
|
||||
summary, line = _extend_line(summary, line, word, display_width, space2)
|
||||
|
||||
if is_truncated:
|
||||
# remove trailing space of last line
|
||||
summary += line.rstrip() + space2 + "..."
|
||||
line = space2
|
||||
|
||||
for tail_item in tail[:-1]:
|
||||
word = tail_item + sep + " "
|
||||
summary, line = _extend_line(summary, line, word, display_width, space2)
|
||||
|
||||
# last value: no sep added + 1 space of width used for trailing ','
|
||||
summary, line = _extend_line(summary, line, tail[-1], display_width - 2, space2)
|
||||
summary += line
|
||||
|
||||
# right now close is either '' or ', '
|
||||
# Now we want to include the ']', but not the maybe space.
|
||||
close = "]" + close.rstrip(" ")
|
||||
summary += close
|
||||
|
||||
if len(summary) > (display_width) or line_break_each_value:
|
||||
summary += space1
|
||||
else: # one row
|
||||
summary += " "
|
||||
|
||||
# remove initial space
|
||||
summary = "[" + summary[len(space2) :]
|
||||
|
||||
return summary
|
||||
|
||||
|
||||
def _justify(
|
||||
head: list[Sequence[str]], tail: list[Sequence[str]]
|
||||
) -> tuple[list[tuple[str, ...]], list[tuple[str, ...]]]:
|
||||
"""
|
||||
Justify items in head and tail, so they are right-aligned when stacked.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
head : list-like of list-likes of strings
|
||||
tail : list-like of list-likes of strings
|
||||
|
||||
Returns
|
||||
-------
|
||||
tuple of list of tuples of strings
|
||||
Same as head and tail, but items are right aligned when stacked
|
||||
vertically.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> _justify([['a', 'b']], [['abc', 'abcd']])
|
||||
([(' a', ' b')], [('abc', 'abcd')])
|
||||
"""
|
||||
combined = head + tail
|
||||
|
||||
# For each position for the sequences in ``combined``,
|
||||
# find the length of the largest string.
|
||||
max_length = [0] * len(combined[0])
|
||||
for inner_seq in combined:
|
||||
length = [len(item) for item in inner_seq]
|
||||
max_length = [max(x, y) for x, y in zip(max_length, length)]
|
||||
|
||||
# justify each item in each list-like in head and tail using max_length
|
||||
head_tuples = [
|
||||
tuple(x.rjust(max_len) for x, max_len in zip(seq, max_length)) for seq in head
|
||||
]
|
||||
tail_tuples = [
|
||||
tuple(x.rjust(max_len) for x, max_len in zip(seq, max_length)) for seq in tail
|
||||
]
|
||||
return head_tuples, tail_tuples
|
||||
|
||||
|
||||
class PrettyDict(dict[_KT, _VT]):
|
||||
"""Dict extension to support abbreviated __repr__"""
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return pprint_thing(self)
|
||||
|
||||
|
||||
class _TextAdjustment:
|
||||
def __init__(self) -> None:
|
||||
self.encoding = get_option("display.encoding")
|
||||
|
||||
def len(self, text: str) -> int:
|
||||
return len(text)
|
||||
|
||||
def justify(self, texts: Any, max_len: int, mode: str = "right") -> list[str]:
|
||||
"""
|
||||
Perform ljust, center, rjust against string or list-like
|
||||
"""
|
||||
if mode == "left":
|
||||
return [x.ljust(max_len) for x in texts]
|
||||
elif mode == "center":
|
||||
return [x.center(max_len) for x in texts]
|
||||
else:
|
||||
return [x.rjust(max_len) for x in texts]
|
||||
|
||||
def adjoin(self, space: int, *lists, **kwargs) -> str:
|
||||
return adjoin(space, *lists, strlen=self.len, justfunc=self.justify, **kwargs)
|
||||
|
||||
|
||||
class _EastAsianTextAdjustment(_TextAdjustment):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
if get_option("display.unicode.ambiguous_as_wide"):
|
||||
self.ambiguous_width = 2
|
||||
else:
|
||||
self.ambiguous_width = 1
|
||||
|
||||
# Definition of East Asian Width
|
||||
# https://unicode.org/reports/tr11/
|
||||
# Ambiguous width can be changed by option
|
||||
self._EAW_MAP = {"Na": 1, "N": 1, "W": 2, "F": 2, "H": 1}
|
||||
|
||||
def len(self, text: str) -> int:
|
||||
"""
|
||||
Calculate display width considering unicode East Asian Width
|
||||
"""
|
||||
if not isinstance(text, str):
|
||||
return len(text)
|
||||
|
||||
return sum(
|
||||
self._EAW_MAP.get(east_asian_width(c), self.ambiguous_width) for c in text
|
||||
)
|
||||
|
||||
def justify(
|
||||
self, texts: Iterable[str], max_len: int, mode: str = "right"
|
||||
) -> list[str]:
|
||||
# re-calculate padding space per str considering East Asian Width
|
||||
def _get_pad(t):
|
||||
return max_len - self.len(t) + len(t)
|
||||
|
||||
if mode == "left":
|
||||
return [x.ljust(_get_pad(x)) for x in texts]
|
||||
elif mode == "center":
|
||||
return [x.center(_get_pad(x)) for x in texts]
|
||||
else:
|
||||
return [x.rjust(_get_pad(x)) for x in texts]
|
||||
|
||||
|
||||
def get_adjustment() -> _TextAdjustment:
|
||||
use_east_asian_width = get_option("display.unicode.east_asian_width")
|
||||
if use_east_asian_width:
|
||||
return _EastAsianTextAdjustment()
|
||||
else:
|
||||
return _TextAdjustment()
|
206
venv/lib/python3.12/site-packages/pandas/io/formats/string.py
Normal file
206
venv/lib/python3.12/site-packages/pandas/io/formats/string.py
Normal file
@ -0,0 +1,206 @@
|
||||
"""
|
||||
Module for formatting output data in console (to string).
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from shutil import get_terminal_size
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas.io.formats.printing import pprint_thing
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Iterable
|
||||
|
||||
from pandas.io.formats.format import DataFrameFormatter
|
||||
|
||||
|
||||
class StringFormatter:
|
||||
"""Formatter for string representation of a dataframe."""
|
||||
|
||||
def __init__(self, fmt: DataFrameFormatter, line_width: int | None = None) -> None:
|
||||
self.fmt = fmt
|
||||
self.adj = fmt.adj
|
||||
self.frame = fmt.frame
|
||||
self.line_width = line_width
|
||||
|
||||
def to_string(self) -> str:
|
||||
text = self._get_string_representation()
|
||||
if self.fmt.should_show_dimensions:
|
||||
text = f"{text}{self.fmt.dimensions_info}"
|
||||
return text
|
||||
|
||||
def _get_strcols(self) -> list[list[str]]:
|
||||
strcols = self.fmt.get_strcols()
|
||||
if self.fmt.is_truncated:
|
||||
strcols = self._insert_dot_separators(strcols)
|
||||
return strcols
|
||||
|
||||
def _get_string_representation(self) -> str:
|
||||
if self.fmt.frame.empty:
|
||||
return self._empty_info_line
|
||||
|
||||
strcols = self._get_strcols()
|
||||
|
||||
if self.line_width is None:
|
||||
# no need to wrap around just print the whole frame
|
||||
return self.adj.adjoin(1, *strcols)
|
||||
|
||||
if self._need_to_wrap_around:
|
||||
return self._join_multiline(strcols)
|
||||
|
||||
return self._fit_strcols_to_terminal_width(strcols)
|
||||
|
||||
@property
|
||||
def _empty_info_line(self) -> str:
|
||||
return (
|
||||
f"Empty {type(self.frame).__name__}\n"
|
||||
f"Columns: {pprint_thing(self.frame.columns)}\n"
|
||||
f"Index: {pprint_thing(self.frame.index)}"
|
||||
)
|
||||
|
||||
@property
|
||||
def _need_to_wrap_around(self) -> bool:
|
||||
return bool(self.fmt.max_cols is None or self.fmt.max_cols > 0)
|
||||
|
||||
def _insert_dot_separators(self, strcols: list[list[str]]) -> list[list[str]]:
|
||||
str_index = self.fmt._get_formatted_index(self.fmt.tr_frame)
|
||||
index_length = len(str_index)
|
||||
|
||||
if self.fmt.is_truncated_horizontally:
|
||||
strcols = self._insert_dot_separator_horizontal(strcols, index_length)
|
||||
|
||||
if self.fmt.is_truncated_vertically:
|
||||
strcols = self._insert_dot_separator_vertical(strcols, index_length)
|
||||
|
||||
return strcols
|
||||
|
||||
@property
|
||||
def _adjusted_tr_col_num(self) -> int:
|
||||
return self.fmt.tr_col_num + 1 if self.fmt.index else self.fmt.tr_col_num
|
||||
|
||||
def _insert_dot_separator_horizontal(
|
||||
self, strcols: list[list[str]], index_length: int
|
||||
) -> list[list[str]]:
|
||||
strcols.insert(self._adjusted_tr_col_num, [" ..."] * index_length)
|
||||
return strcols
|
||||
|
||||
def _insert_dot_separator_vertical(
|
||||
self, strcols: list[list[str]], index_length: int
|
||||
) -> list[list[str]]:
|
||||
n_header_rows = index_length - len(self.fmt.tr_frame)
|
||||
row_num = self.fmt.tr_row_num
|
||||
for ix, col in enumerate(strcols):
|
||||
cwidth = self.adj.len(col[row_num])
|
||||
|
||||
if self.fmt.is_truncated_horizontally:
|
||||
is_dot_col = ix == self._adjusted_tr_col_num
|
||||
else:
|
||||
is_dot_col = False
|
||||
|
||||
if cwidth > 3 or is_dot_col:
|
||||
dots = "..."
|
||||
else:
|
||||
dots = ".."
|
||||
|
||||
if ix == 0 and self.fmt.index:
|
||||
dot_mode = "left"
|
||||
elif is_dot_col:
|
||||
cwidth = 4
|
||||
dot_mode = "right"
|
||||
else:
|
||||
dot_mode = "right"
|
||||
|
||||
dot_str = self.adj.justify([dots], cwidth, mode=dot_mode)[0]
|
||||
col.insert(row_num + n_header_rows, dot_str)
|
||||
return strcols
|
||||
|
||||
def _join_multiline(self, strcols_input: Iterable[list[str]]) -> str:
|
||||
lwidth = self.line_width
|
||||
adjoin_width = 1
|
||||
strcols = list(strcols_input)
|
||||
|
||||
if self.fmt.index:
|
||||
idx = strcols.pop(0)
|
||||
lwidth -= np.array([self.adj.len(x) for x in idx]).max() + adjoin_width
|
||||
|
||||
col_widths = [
|
||||
np.array([self.adj.len(x) for x in col]).max() if len(col) > 0 else 0
|
||||
for col in strcols
|
||||
]
|
||||
|
||||
assert lwidth is not None
|
||||
col_bins = _binify(col_widths, lwidth)
|
||||
nbins = len(col_bins)
|
||||
|
||||
str_lst = []
|
||||
start = 0
|
||||
for i, end in enumerate(col_bins):
|
||||
row = strcols[start:end]
|
||||
if self.fmt.index:
|
||||
row.insert(0, idx)
|
||||
if nbins > 1:
|
||||
nrows = len(row[-1])
|
||||
if end <= len(strcols) and i < nbins - 1:
|
||||
row.append([" \\"] + [" "] * (nrows - 1))
|
||||
else:
|
||||
row.append([" "] * nrows)
|
||||
str_lst.append(self.adj.adjoin(adjoin_width, *row))
|
||||
start = end
|
||||
return "\n\n".join(str_lst)
|
||||
|
||||
def _fit_strcols_to_terminal_width(self, strcols: list[list[str]]) -> str:
|
||||
from pandas import Series
|
||||
|
||||
lines = self.adj.adjoin(1, *strcols).split("\n")
|
||||
max_len = Series(lines).str.len().max()
|
||||
# plus truncate dot col
|
||||
width, _ = get_terminal_size()
|
||||
dif = max_len - width
|
||||
# '+ 1' to avoid too wide repr (GH PR #17023)
|
||||
adj_dif = dif + 1
|
||||
col_lens = Series([Series(ele).str.len().max() for ele in strcols])
|
||||
n_cols = len(col_lens)
|
||||
counter = 0
|
||||
while adj_dif > 0 and n_cols > 1:
|
||||
counter += 1
|
||||
mid = round(n_cols / 2)
|
||||
mid_ix = col_lens.index[mid]
|
||||
col_len = col_lens[mid_ix]
|
||||
# adjoin adds one
|
||||
adj_dif -= col_len + 1
|
||||
col_lens = col_lens.drop(mid_ix)
|
||||
n_cols = len(col_lens)
|
||||
|
||||
# subtract index column
|
||||
max_cols_fitted = n_cols - self.fmt.index
|
||||
# GH-21180. Ensure that we print at least two.
|
||||
max_cols_fitted = max(max_cols_fitted, 2)
|
||||
self.fmt.max_cols_fitted = max_cols_fitted
|
||||
|
||||
# Call again _truncate to cut frame appropriately
|
||||
# and then generate string representation
|
||||
self.fmt.truncate()
|
||||
strcols = self._get_strcols()
|
||||
return self.adj.adjoin(1, *strcols)
|
||||
|
||||
|
||||
def _binify(cols: list[int], line_width: int) -> list[int]:
|
||||
adjoin_width = 1
|
||||
bins = []
|
||||
curr_width = 0
|
||||
i_last_column = len(cols) - 1
|
||||
for i, w in enumerate(cols):
|
||||
w_adjoined = w + adjoin_width
|
||||
curr_width += w_adjoined
|
||||
if i_last_column == i:
|
||||
wrap = curr_width + 1 > line_width and i > 0
|
||||
else:
|
||||
wrap = curr_width + 2 > line_width and i > 0
|
||||
if wrap:
|
||||
bins.append(i)
|
||||
curr_width = w_adjoined
|
||||
|
||||
bins.append(len(cols))
|
||||
return bins
|
4136
venv/lib/python3.12/site-packages/pandas/io/formats/style.py
Normal file
4136
venv/lib/python3.12/site-packages/pandas/io/formats/style.py
Normal file
File diff suppressed because it is too large
Load Diff
2497
venv/lib/python3.12/site-packages/pandas/io/formats/style_render.py
Normal file
2497
venv/lib/python3.12/site-packages/pandas/io/formats/style_render.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,16 @@
|
||||
{# Update the html_style/table_structure.html documentation too #}
|
||||
{% if doctype_html %}
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="{{encoding}}">
|
||||
{% if not exclude_styles %}{% include html_style_tpl %}{% endif %}
|
||||
</head>
|
||||
<body>
|
||||
{% include html_table_tpl %}
|
||||
</body>
|
||||
</html>
|
||||
{% elif not doctype_html %}
|
||||
{% if not exclude_styles %}{% include html_style_tpl %}{% endif %}
|
||||
{% include html_table_tpl %}
|
||||
{% endif %}
|
@ -0,0 +1,26 @@
|
||||
{%- block before_style -%}{%- endblock before_style -%}
|
||||
{% block style %}
|
||||
<style type="text/css">
|
||||
{% block table_styles %}
|
||||
{% for s in table_styles %}
|
||||
#T_{{uuid}} {{s.selector}} {
|
||||
{% for p,val in s.props %}
|
||||
{{p}}: {{val}};
|
||||
{% endfor %}
|
||||
}
|
||||
{% endfor %}
|
||||
{% endblock table_styles %}
|
||||
{% block before_cellstyle %}{% endblock before_cellstyle %}
|
||||
{% block cellstyle %}
|
||||
{% for cs in [cellstyle, cellstyle_index, cellstyle_columns] %}
|
||||
{% for s in cs %}
|
||||
{% for selector in s.selectors %}{% if not loop.first %}, {% endif %}#T_{{uuid}}_{{selector}}{% endfor %} {
|
||||
{% for p,val in s.props %}
|
||||
{{p}}: {{val}};
|
||||
{% endfor %}
|
||||
}
|
||||
{% endfor %}
|
||||
{% endfor %}
|
||||
{% endblock cellstyle %}
|
||||
</style>
|
||||
{% endblock style %}
|
@ -0,0 +1,63 @@
|
||||
{% block before_table %}{% endblock before_table %}
|
||||
{% block table %}
|
||||
{% if exclude_styles %}
|
||||
<table>
|
||||
{% else %}
|
||||
<table id="T_{{uuid}}"{% if table_attributes %} {{table_attributes}}{% endif %}>
|
||||
{% endif %}
|
||||
{% block caption %}
|
||||
{% if caption and caption is string %}
|
||||
<caption>{{caption}}</caption>
|
||||
{% elif caption and caption is sequence %}
|
||||
<caption>{{caption[0]}}</caption>
|
||||
{% endif %}
|
||||
{% endblock caption %}
|
||||
{% block thead %}
|
||||
<thead>
|
||||
{% block before_head_rows %}{% endblock %}
|
||||
{% for r in head %}
|
||||
{% block head_tr scoped %}
|
||||
<tr>
|
||||
{% if exclude_styles %}
|
||||
{% for c in r %}
|
||||
{% if c.is_visible != False %}
|
||||
<{{c.type}} {{c.attributes}}>{{c.display_value}}</{{c.type}}>
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
{% else %}
|
||||
{% for c in r %}
|
||||
{% if c.is_visible != False %}
|
||||
<{{c.type}} {%- if c.id is defined %} id="T_{{uuid}}_{{c.id}}" {%- endif %} class="{{c.class}}" {{c.attributes}}>{{c.display_value}}</{{c.type}}>
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
</tr>
|
||||
{% endblock head_tr %}
|
||||
{% endfor %}
|
||||
{% block after_head_rows %}{% endblock %}
|
||||
</thead>
|
||||
{% endblock thead %}
|
||||
{% block tbody %}
|
||||
<tbody>
|
||||
{% block before_rows %}{% endblock before_rows %}
|
||||
{% for r in body %}
|
||||
{% block tr scoped %}
|
||||
<tr>
|
||||
{% if exclude_styles %}
|
||||
{% for c in r %}{% if c.is_visible != False %}
|
||||
<{{c.type}} {{c.attributes}}>{{c.display_value}}</{{c.type}}>
|
||||
{% endif %}{% endfor %}
|
||||
{% else %}
|
||||
{% for c in r %}{% if c.is_visible != False %}
|
||||
<{{c.type}} {%- if c.id is defined %} id="T_{{uuid}}_{{c.id}}" {%- endif %} class="{{c.class}}" {{c.attributes}}>{{c.display_value}}</{{c.type}}>
|
||||
{% endif %}{% endfor %}
|
||||
{% endif %}
|
||||
</tr>
|
||||
{% endblock tr %}
|
||||
{% endfor %}
|
||||
{% block after_rows %}{% endblock after_rows %}
|
||||
</tbody>
|
||||
{% endblock tbody %}
|
||||
</table>
|
||||
{% endblock table %}
|
||||
{% block after_table %}{% endblock after_table %}
|
@ -0,0 +1,5 @@
|
||||
{% if environment == "longtable" %}
|
||||
{% include "latex_longtable.tpl" %}
|
||||
{% else %}
|
||||
{% include "latex_table.tpl" %}
|
||||
{% endif %}
|
@ -0,0 +1,82 @@
|
||||
\begin{longtable}
|
||||
{%- set position = parse_table(table_styles, 'position') %}
|
||||
{%- if position is not none %}
|
||||
[{{position}}]
|
||||
{%- endif %}
|
||||
{%- set column_format = parse_table(table_styles, 'column_format') %}
|
||||
{% raw %}{{% endraw %}{{column_format}}{% raw %}}{% endraw %}
|
||||
|
||||
{% for style in table_styles %}
|
||||
{% if style['selector'] not in ['position', 'position_float', 'caption', 'toprule', 'midrule', 'bottomrule', 'column_format', 'label'] %}
|
||||
\{{style['selector']}}{{parse_table(table_styles, style['selector'])}}
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
{% if caption and caption is string %}
|
||||
\caption{% raw %}{{% endraw %}{{caption}}{% raw %}}{% endraw %}
|
||||
{%- set label = parse_table(table_styles, 'label') %}
|
||||
{%- if label is not none %}
|
||||
\label{{label}}
|
||||
{%- endif %} \\
|
||||
{% elif caption and caption is sequence %}
|
||||
\caption[{{caption[1]}}]{% raw %}{{% endraw %}{{caption[0]}}{% raw %}}{% endraw %}
|
||||
{%- set label = parse_table(table_styles, 'label') %}
|
||||
{%- if label is not none %}
|
||||
\label{{label}}
|
||||
{%- endif %} \\
|
||||
{% else %}
|
||||
{%- set label = parse_table(table_styles, 'label') %}
|
||||
{%- if label is not none %}
|
||||
\label{{label}} \\
|
||||
{% endif %}
|
||||
{% endif %}
|
||||
{% set toprule = parse_table(table_styles, 'toprule') %}
|
||||
{% if toprule is not none %}
|
||||
\{{toprule}}
|
||||
{% endif %}
|
||||
{% for row in head %}
|
||||
{% for c in row %}{%- if not loop.first %} & {% endif %}{{parse_header(c, multirow_align, multicol_align, siunitx)}}{% endfor %} \\
|
||||
{% endfor %}
|
||||
{% set midrule = parse_table(table_styles, 'midrule') %}
|
||||
{% if midrule is not none %}
|
||||
\{{midrule}}
|
||||
{% endif %}
|
||||
\endfirsthead
|
||||
{% if caption and caption is string %}
|
||||
\caption[]{% raw %}{{% endraw %}{{caption}}{% raw %}}{% endraw %} \\
|
||||
{% elif caption and caption is sequence %}
|
||||
\caption[]{% raw %}{{% endraw %}{{caption[0]}}{% raw %}}{% endraw %} \\
|
||||
{% endif %}
|
||||
{% if toprule is not none %}
|
||||
\{{toprule}}
|
||||
{% endif %}
|
||||
{% for row in head %}
|
||||
{% for c in row %}{%- if not loop.first %} & {% endif %}{{parse_header(c, multirow_align, multicol_align, siunitx)}}{% endfor %} \\
|
||||
{% endfor %}
|
||||
{% if midrule is not none %}
|
||||
\{{midrule}}
|
||||
{% endif %}
|
||||
\endhead
|
||||
{% if midrule is not none %}
|
||||
\{{midrule}}
|
||||
{% endif %}
|
||||
\multicolumn{% raw %}{{% endraw %}{{body[0]|length}}{% raw %}}{% endraw %}{r}{Continued on next page} \\
|
||||
{% if midrule is not none %}
|
||||
\{{midrule}}
|
||||
{% endif %}
|
||||
\endfoot
|
||||
{% set bottomrule = parse_table(table_styles, 'bottomrule') %}
|
||||
{% if bottomrule is not none %}
|
||||
\{{bottomrule}}
|
||||
{% endif %}
|
||||
\endlastfoot
|
||||
{% for row in body %}
|
||||
{% for c in row %}{% if not loop.first %} & {% endif %}
|
||||
{%- if c.type == 'th' %}{{parse_header(c, multirow_align, multicol_align)}}{% else %}{{parse_cell(c.cellstyle, c.display_value, convert_css)}}{% endif %}
|
||||
{%- endfor %} \\
|
||||
{% if clines and clines[loop.index] | length > 0 %}
|
||||
{%- for cline in clines[loop.index] %}{% if not loop.first %} {% endif %}{{ cline }}{% endfor %}
|
||||
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
\end{longtable}
|
||||
{% raw %}{% endraw %}
|
@ -0,0 +1,57 @@
|
||||
{% if environment or parse_wrap(table_styles, caption) %}
|
||||
\begin{% raw %}{{% endraw %}{{environment if environment else "table"}}{% raw %}}{% endraw %}
|
||||
{%- set position = parse_table(table_styles, 'position') %}
|
||||
{%- if position is not none %}
|
||||
[{{position}}]
|
||||
{%- endif %}
|
||||
|
||||
{% set position_float = parse_table(table_styles, 'position_float') %}
|
||||
{% if position_float is not none%}
|
||||
\{{position_float}}
|
||||
{% endif %}
|
||||
{% if caption and caption is string %}
|
||||
\caption{% raw %}{{% endraw %}{{caption}}{% raw %}}{% endraw %}
|
||||
|
||||
{% elif caption and caption is sequence %}
|
||||
\caption[{{caption[1]}}]{% raw %}{{% endraw %}{{caption[0]}}{% raw %}}{% endraw %}
|
||||
|
||||
{% endif %}
|
||||
{% for style in table_styles %}
|
||||
{% if style['selector'] not in ['position', 'position_float', 'caption', 'toprule', 'midrule', 'bottomrule', 'column_format'] %}
|
||||
\{{style['selector']}}{{parse_table(table_styles, style['selector'])}}
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
\begin{tabular}
|
||||
{%- set column_format = parse_table(table_styles, 'column_format') %}
|
||||
{% raw %}{{% endraw %}{{column_format}}{% raw %}}{% endraw %}
|
||||
|
||||
{% set toprule = parse_table(table_styles, 'toprule') %}
|
||||
{% if toprule is not none %}
|
||||
\{{toprule}}
|
||||
{% endif %}
|
||||
{% for row in head %}
|
||||
{% for c in row %}{%- if not loop.first %} & {% endif %}{{parse_header(c, multirow_align, multicol_align, siunitx, convert_css)}}{% endfor %} \\
|
||||
{% endfor %}
|
||||
{% set midrule = parse_table(table_styles, 'midrule') %}
|
||||
{% if midrule is not none %}
|
||||
\{{midrule}}
|
||||
{% endif %}
|
||||
{% for row in body %}
|
||||
{% for c in row %}{% if not loop.first %} & {% endif %}
|
||||
{%- if c.type == 'th' %}{{parse_header(c, multirow_align, multicol_align, False, convert_css)}}{% else %}{{parse_cell(c.cellstyle, c.display_value, convert_css)}}{% endif %}
|
||||
{%- endfor %} \\
|
||||
{% if clines and clines[loop.index] | length > 0 %}
|
||||
{%- for cline in clines[loop.index] %}{% if not loop.first %} {% endif %}{{ cline }}{% endfor %}
|
||||
|
||||
{% endif %}
|
||||
{% endfor %}
|
||||
{% set bottomrule = parse_table(table_styles, 'bottomrule') %}
|
||||
{% if bottomrule is not none %}
|
||||
\{{bottomrule}}
|
||||
{% endif %}
|
||||
\end{tabular}
|
||||
{% if environment or parse_wrap(table_styles, caption) %}
|
||||
\end{% raw %}{{% endraw %}{{environment if environment else "table"}}{% raw %}}{% endraw %}
|
||||
|
||||
{% endif %}
|
@ -0,0 +1,12 @@
|
||||
{% for r in head %}
|
||||
{% for c in r %}{% if c["is_visible"] %}
|
||||
{{ c["display_value"] }}{% if not loop.last %}{{ delimiter }}{% endif %}
|
||||
{% endif %}{% endfor %}
|
||||
|
||||
{% endfor %}
|
||||
{% for r in body %}
|
||||
{% for c in r %}{% if c["is_visible"] %}
|
||||
{{ c["display_value"] }}{% if not loop.last %}{{ delimiter }}{% endif %}
|
||||
{% endif %}{% endfor %}
|
||||
|
||||
{% endfor %}
|
560
venv/lib/python3.12/site-packages/pandas/io/formats/xml.py
Normal file
560
venv/lib/python3.12/site-packages/pandas/io/formats/xml.py
Normal file
@ -0,0 +1,560 @@
|
||||
"""
|
||||
:mod:`pandas.io.formats.xml` is a module for formatting data in XML.
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
import codecs
|
||||
import io
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
final,
|
||||
)
|
||||
import warnings
|
||||
|
||||
from pandas.errors import AbstractMethodError
|
||||
from pandas.util._decorators import (
|
||||
cache_readonly,
|
||||
doc,
|
||||
)
|
||||
|
||||
from pandas.core.dtypes.common import is_list_like
|
||||
from pandas.core.dtypes.missing import isna
|
||||
|
||||
from pandas.core.shared_docs import _shared_docs
|
||||
|
||||
from pandas.io.common import get_handle
|
||||
from pandas.io.xml import (
|
||||
get_data_from_filepath,
|
||||
preprocess_data,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pandas._typing import (
|
||||
CompressionOptions,
|
||||
FilePath,
|
||||
ReadBuffer,
|
||||
StorageOptions,
|
||||
WriteBuffer,
|
||||
)
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
|
||||
@doc(
|
||||
storage_options=_shared_docs["storage_options"],
|
||||
compression_options=_shared_docs["compression_options"] % "path_or_buffer",
|
||||
)
|
||||
class _BaseXMLFormatter:
|
||||
"""
|
||||
Subclass for formatting data in XML.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path_or_buffer : str or file-like
|
||||
This can be either a string of raw XML, a valid URL,
|
||||
file or file-like object.
|
||||
|
||||
index : bool
|
||||
Whether to include index in xml document.
|
||||
|
||||
row_name : str
|
||||
Name for root of xml document. Default is 'data'.
|
||||
|
||||
root_name : str
|
||||
Name for row elements of xml document. Default is 'row'.
|
||||
|
||||
na_rep : str
|
||||
Missing data representation.
|
||||
|
||||
attrs_cols : list
|
||||
List of columns to write as attributes in row element.
|
||||
|
||||
elem_cols : list
|
||||
List of columns to write as children in row element.
|
||||
|
||||
namespaces : dict
|
||||
The namespaces to define in XML document as dicts with key
|
||||
being namespace and value the URI.
|
||||
|
||||
prefix : str
|
||||
The prefix for each element in XML document including root.
|
||||
|
||||
encoding : str
|
||||
Encoding of xml object or document.
|
||||
|
||||
xml_declaration : bool
|
||||
Whether to include xml declaration at top line item in xml.
|
||||
|
||||
pretty_print : bool
|
||||
Whether to write xml document with line breaks and indentation.
|
||||
|
||||
stylesheet : str or file-like
|
||||
A URL, file, file-like object, or a raw string containing XSLT.
|
||||
|
||||
{compression_options}
|
||||
|
||||
.. versionchanged:: 1.4.0 Zstandard support.
|
||||
|
||||
{storage_options}
|
||||
|
||||
See also
|
||||
--------
|
||||
pandas.io.formats.xml.EtreeXMLFormatter
|
||||
pandas.io.formats.xml.LxmlXMLFormatter
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
frame: DataFrame,
|
||||
path_or_buffer: FilePath | WriteBuffer[bytes] | WriteBuffer[str] | None = None,
|
||||
index: bool = True,
|
||||
root_name: str | None = "data",
|
||||
row_name: str | None = "row",
|
||||
na_rep: str | None = None,
|
||||
attr_cols: list[str] | None = None,
|
||||
elem_cols: list[str] | None = None,
|
||||
namespaces: dict[str | None, str] | None = None,
|
||||
prefix: str | None = None,
|
||||
encoding: str = "utf-8",
|
||||
xml_declaration: bool | None = True,
|
||||
pretty_print: bool | None = True,
|
||||
stylesheet: FilePath | ReadBuffer[str] | ReadBuffer[bytes] | None = None,
|
||||
compression: CompressionOptions = "infer",
|
||||
storage_options: StorageOptions | None = None,
|
||||
) -> None:
|
||||
self.frame = frame
|
||||
self.path_or_buffer = path_or_buffer
|
||||
self.index = index
|
||||
self.root_name = root_name
|
||||
self.row_name = row_name
|
||||
self.na_rep = na_rep
|
||||
self.attr_cols = attr_cols
|
||||
self.elem_cols = elem_cols
|
||||
self.namespaces = namespaces
|
||||
self.prefix = prefix
|
||||
self.encoding = encoding
|
||||
self.xml_declaration = xml_declaration
|
||||
self.pretty_print = pretty_print
|
||||
self.stylesheet = stylesheet
|
||||
self.compression: CompressionOptions = compression
|
||||
self.storage_options = storage_options
|
||||
|
||||
self.orig_cols = self.frame.columns.tolist()
|
||||
self.frame_dicts = self._process_dataframe()
|
||||
|
||||
self._validate_columns()
|
||||
self._validate_encoding()
|
||||
self.prefix_uri = self._get_prefix_uri()
|
||||
self._handle_indexes()
|
||||
|
||||
def _build_tree(self) -> bytes:
|
||||
"""
|
||||
Build tree from data.
|
||||
|
||||
This method initializes the root and builds attributes and elements
|
||||
with optional namespaces.
|
||||
"""
|
||||
raise AbstractMethodError(self)
|
||||
|
||||
@final
|
||||
def _validate_columns(self) -> None:
|
||||
"""
|
||||
Validate elems_cols and attrs_cols.
|
||||
|
||||
This method will check if columns is list-like.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
* If value is not a list and less then length of nodes.
|
||||
"""
|
||||
if self.attr_cols and not is_list_like(self.attr_cols):
|
||||
raise TypeError(
|
||||
f"{type(self.attr_cols).__name__} is not a valid type for attr_cols"
|
||||
)
|
||||
|
||||
if self.elem_cols and not is_list_like(self.elem_cols):
|
||||
raise TypeError(
|
||||
f"{type(self.elem_cols).__name__} is not a valid type for elem_cols"
|
||||
)
|
||||
|
||||
@final
|
||||
def _validate_encoding(self) -> None:
|
||||
"""
|
||||
Validate encoding.
|
||||
|
||||
This method will check if encoding is among listed under codecs.
|
||||
|
||||
Raises
|
||||
------
|
||||
LookupError
|
||||
* If encoding is not available in codecs.
|
||||
"""
|
||||
|
||||
codecs.lookup(self.encoding)
|
||||
|
||||
@final
|
||||
def _process_dataframe(self) -> dict[int | str, dict[str, Any]]:
|
||||
"""
|
||||
Adjust Data Frame to fit xml output.
|
||||
|
||||
This method will adjust underlying data frame for xml output,
|
||||
including optionally replacing missing values and including indexes.
|
||||
"""
|
||||
|
||||
df = self.frame
|
||||
|
||||
if self.index:
|
||||
df = df.reset_index()
|
||||
|
||||
if self.na_rep is not None:
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings(
|
||||
"ignore",
|
||||
"Downcasting object dtype arrays",
|
||||
category=FutureWarning,
|
||||
)
|
||||
df = df.fillna(self.na_rep)
|
||||
|
||||
return df.to_dict(orient="index")
|
||||
|
||||
@final
|
||||
def _handle_indexes(self) -> None:
|
||||
"""
|
||||
Handle indexes.
|
||||
|
||||
This method will add indexes into attr_cols or elem_cols.
|
||||
"""
|
||||
|
||||
if not self.index:
|
||||
return
|
||||
|
||||
first_key = next(iter(self.frame_dicts))
|
||||
indexes: list[str] = [
|
||||
x for x in self.frame_dicts[first_key].keys() if x not in self.orig_cols
|
||||
]
|
||||
|
||||
if self.attr_cols:
|
||||
self.attr_cols = indexes + self.attr_cols
|
||||
|
||||
if self.elem_cols:
|
||||
self.elem_cols = indexes + self.elem_cols
|
||||
|
||||
def _get_prefix_uri(self) -> str:
|
||||
"""
|
||||
Get uri of namespace prefix.
|
||||
|
||||
This method retrieves corresponding URI to prefix in namespaces.
|
||||
|
||||
Raises
|
||||
------
|
||||
KeyError
|
||||
*If prefix is not included in namespace dict.
|
||||
"""
|
||||
|
||||
raise AbstractMethodError(self)
|
||||
|
||||
@final
|
||||
def _other_namespaces(self) -> dict:
|
||||
"""
|
||||
Define other namespaces.
|
||||
|
||||
This method will build dictionary of namespaces attributes
|
||||
for root element, conditionally with optional namespaces and
|
||||
prefix.
|
||||
"""
|
||||
|
||||
nmsp_dict: dict[str, str] = {}
|
||||
if self.namespaces:
|
||||
nmsp_dict = {
|
||||
f"xmlns{p if p=='' else f':{p}'}": n
|
||||
for p, n in self.namespaces.items()
|
||||
if n != self.prefix_uri[1:-1]
|
||||
}
|
||||
|
||||
return nmsp_dict
|
||||
|
||||
@final
|
||||
def _build_attribs(self, d: dict[str, Any], elem_row: Any) -> Any:
|
||||
"""
|
||||
Create attributes of row.
|
||||
|
||||
This method adds attributes using attr_cols to row element and
|
||||
works with tuples for multindex or hierarchical columns.
|
||||
"""
|
||||
|
||||
if not self.attr_cols:
|
||||
return elem_row
|
||||
|
||||
for col in self.attr_cols:
|
||||
attr_name = self._get_flat_col_name(col)
|
||||
try:
|
||||
if not isna(d[col]):
|
||||
elem_row.attrib[attr_name] = str(d[col])
|
||||
except KeyError:
|
||||
raise KeyError(f"no valid column, {col}")
|
||||
return elem_row
|
||||
|
||||
@final
|
||||
def _get_flat_col_name(self, col: str | tuple) -> str:
|
||||
flat_col = col
|
||||
if isinstance(col, tuple):
|
||||
flat_col = (
|
||||
"".join([str(c) for c in col]).strip()
|
||||
if "" in col
|
||||
else "_".join([str(c) for c in col]).strip()
|
||||
)
|
||||
return f"{self.prefix_uri}{flat_col}"
|
||||
|
||||
@cache_readonly
|
||||
def _sub_element_cls(self):
|
||||
raise AbstractMethodError(self)
|
||||
|
||||
@final
|
||||
def _build_elems(self, d: dict[str, Any], elem_row: Any) -> None:
|
||||
"""
|
||||
Create child elements of row.
|
||||
|
||||
This method adds child elements using elem_cols to row element and
|
||||
works with tuples for multindex or hierarchical columns.
|
||||
"""
|
||||
sub_element_cls = self._sub_element_cls
|
||||
|
||||
if not self.elem_cols:
|
||||
return
|
||||
|
||||
for col in self.elem_cols:
|
||||
elem_name = self._get_flat_col_name(col)
|
||||
try:
|
||||
val = None if isna(d[col]) or d[col] == "" else str(d[col])
|
||||
sub_element_cls(elem_row, elem_name).text = val
|
||||
except KeyError:
|
||||
raise KeyError(f"no valid column, {col}")
|
||||
|
||||
@final
|
||||
def write_output(self) -> str | None:
|
||||
xml_doc = self._build_tree()
|
||||
|
||||
if self.path_or_buffer is not None:
|
||||
with get_handle(
|
||||
self.path_or_buffer,
|
||||
"wb",
|
||||
compression=self.compression,
|
||||
storage_options=self.storage_options,
|
||||
is_text=False,
|
||||
) as handles:
|
||||
handles.handle.write(xml_doc)
|
||||
return None
|
||||
|
||||
else:
|
||||
return xml_doc.decode(self.encoding).rstrip()
|
||||
|
||||
|
||||
class EtreeXMLFormatter(_BaseXMLFormatter):
|
||||
"""
|
||||
Class for formatting data in xml using Python standard library
|
||||
modules: `xml.etree.ElementTree` and `xml.dom.minidom`.
|
||||
"""
|
||||
|
||||
def _build_tree(self) -> bytes:
|
||||
from xml.etree.ElementTree import (
|
||||
Element,
|
||||
SubElement,
|
||||
tostring,
|
||||
)
|
||||
|
||||
self.root = Element(
|
||||
f"{self.prefix_uri}{self.root_name}", attrib=self._other_namespaces()
|
||||
)
|
||||
|
||||
for d in self.frame_dicts.values():
|
||||
elem_row = SubElement(self.root, f"{self.prefix_uri}{self.row_name}")
|
||||
|
||||
if not self.attr_cols and not self.elem_cols:
|
||||
self.elem_cols = list(d.keys())
|
||||
self._build_elems(d, elem_row)
|
||||
|
||||
else:
|
||||
elem_row = self._build_attribs(d, elem_row)
|
||||
self._build_elems(d, elem_row)
|
||||
|
||||
self.out_xml = tostring(
|
||||
self.root,
|
||||
method="xml",
|
||||
encoding=self.encoding,
|
||||
xml_declaration=self.xml_declaration,
|
||||
)
|
||||
|
||||
if self.pretty_print:
|
||||
self.out_xml = self._prettify_tree()
|
||||
|
||||
if self.stylesheet is not None:
|
||||
raise ValueError(
|
||||
"To use stylesheet, you need lxml installed and selected as parser."
|
||||
)
|
||||
|
||||
return self.out_xml
|
||||
|
||||
def _get_prefix_uri(self) -> str:
|
||||
from xml.etree.ElementTree import register_namespace
|
||||
|
||||
uri = ""
|
||||
if self.namespaces:
|
||||
for p, n in self.namespaces.items():
|
||||
if isinstance(p, str) and isinstance(n, str):
|
||||
register_namespace(p, n)
|
||||
if self.prefix:
|
||||
try:
|
||||
uri = f"{{{self.namespaces[self.prefix]}}}"
|
||||
except KeyError:
|
||||
raise KeyError(f"{self.prefix} is not included in namespaces")
|
||||
elif "" in self.namespaces:
|
||||
uri = f'{{{self.namespaces[""]}}}'
|
||||
else:
|
||||
uri = ""
|
||||
|
||||
return uri
|
||||
|
||||
@cache_readonly
|
||||
def _sub_element_cls(self):
|
||||
from xml.etree.ElementTree import SubElement
|
||||
|
||||
return SubElement
|
||||
|
||||
def _prettify_tree(self) -> bytes:
|
||||
"""
|
||||
Output tree for pretty print format.
|
||||
|
||||
This method will pretty print xml with line breaks and indentation.
|
||||
"""
|
||||
|
||||
from xml.dom.minidom import parseString
|
||||
|
||||
dom = parseString(self.out_xml)
|
||||
|
||||
return dom.toprettyxml(indent=" ", encoding=self.encoding)
|
||||
|
||||
|
||||
class LxmlXMLFormatter(_BaseXMLFormatter):
|
||||
"""
|
||||
Class for formatting data in xml using Python standard library
|
||||
modules: `xml.etree.ElementTree` and `xml.dom.minidom`.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
self._convert_empty_str_key()
|
||||
|
||||
def _build_tree(self) -> bytes:
|
||||
"""
|
||||
Build tree from data.
|
||||
|
||||
This method initializes the root and builds attributes and elements
|
||||
with optional namespaces.
|
||||
"""
|
||||
from lxml.etree import (
|
||||
Element,
|
||||
SubElement,
|
||||
tostring,
|
||||
)
|
||||
|
||||
self.root = Element(f"{self.prefix_uri}{self.root_name}", nsmap=self.namespaces)
|
||||
|
||||
for d in self.frame_dicts.values():
|
||||
elem_row = SubElement(self.root, f"{self.prefix_uri}{self.row_name}")
|
||||
|
||||
if not self.attr_cols and not self.elem_cols:
|
||||
self.elem_cols = list(d.keys())
|
||||
self._build_elems(d, elem_row)
|
||||
|
||||
else:
|
||||
elem_row = self._build_attribs(d, elem_row)
|
||||
self._build_elems(d, elem_row)
|
||||
|
||||
self.out_xml = tostring(
|
||||
self.root,
|
||||
pretty_print=self.pretty_print,
|
||||
method="xml",
|
||||
encoding=self.encoding,
|
||||
xml_declaration=self.xml_declaration,
|
||||
)
|
||||
|
||||
if self.stylesheet is not None:
|
||||
self.out_xml = self._transform_doc()
|
||||
|
||||
return self.out_xml
|
||||
|
||||
def _convert_empty_str_key(self) -> None:
|
||||
"""
|
||||
Replace zero-length string in `namespaces`.
|
||||
|
||||
This method will replace '' with None to align to `lxml`
|
||||
requirement that empty string prefixes are not allowed.
|
||||
"""
|
||||
|
||||
if self.namespaces and "" in self.namespaces.keys():
|
||||
self.namespaces[None] = self.namespaces.pop("", "default")
|
||||
|
||||
def _get_prefix_uri(self) -> str:
|
||||
uri = ""
|
||||
if self.namespaces:
|
||||
if self.prefix:
|
||||
try:
|
||||
uri = f"{{{self.namespaces[self.prefix]}}}"
|
||||
except KeyError:
|
||||
raise KeyError(f"{self.prefix} is not included in namespaces")
|
||||
elif "" in self.namespaces:
|
||||
uri = f'{{{self.namespaces[""]}}}'
|
||||
else:
|
||||
uri = ""
|
||||
|
||||
return uri
|
||||
|
||||
@cache_readonly
|
||||
def _sub_element_cls(self):
|
||||
from lxml.etree import SubElement
|
||||
|
||||
return SubElement
|
||||
|
||||
def _transform_doc(self) -> bytes:
|
||||
"""
|
||||
Parse stylesheet from file or buffer and run it.
|
||||
|
||||
This method will parse stylesheet object into tree for parsing
|
||||
conditionally by its specific object type, then transforms
|
||||
original tree with XSLT script.
|
||||
"""
|
||||
from lxml.etree import (
|
||||
XSLT,
|
||||
XMLParser,
|
||||
fromstring,
|
||||
parse,
|
||||
)
|
||||
|
||||
style_doc = self.stylesheet
|
||||
assert style_doc is not None # is ensured by caller
|
||||
|
||||
handle_data = get_data_from_filepath(
|
||||
filepath_or_buffer=style_doc,
|
||||
encoding=self.encoding,
|
||||
compression=self.compression,
|
||||
storage_options=self.storage_options,
|
||||
)
|
||||
|
||||
with preprocess_data(handle_data) as xml_data:
|
||||
curr_parser = XMLParser(encoding=self.encoding)
|
||||
|
||||
if isinstance(xml_data, io.StringIO):
|
||||
xsl_doc = fromstring(
|
||||
xml_data.getvalue().encode(self.encoding), parser=curr_parser
|
||||
)
|
||||
else:
|
||||
xsl_doc = parse(xml_data, parser=curr_parser)
|
||||
|
||||
transformer = XSLT(xsl_doc)
|
||||
new_doc = transformer(self.root)
|
||||
|
||||
return bytes(new_doc)
|
255
venv/lib/python3.12/site-packages/pandas/io/gbq.py
Normal file
255
venv/lib/python3.12/site-packages/pandas/io/gbq.py
Normal file
@ -0,0 +1,255 @@
|
||||
""" Google BigQuery support """
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
)
|
||||
import warnings
|
||||
|
||||
from pandas.compat._optional import import_optional_dependency
|
||||
from pandas.util._exceptions import find_stack_level
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from google.auth.credentials import Credentials
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
|
||||
def _try_import():
|
||||
# since pandas is a dependency of pandas-gbq
|
||||
# we need to import on first use
|
||||
msg = (
|
||||
"pandas-gbq is required to load data from Google BigQuery. "
|
||||
"See the docs: https://pandas-gbq.readthedocs.io."
|
||||
)
|
||||
pandas_gbq = import_optional_dependency("pandas_gbq", extra=msg)
|
||||
return pandas_gbq
|
||||
|
||||
|
||||
def read_gbq(
|
||||
query: str,
|
||||
project_id: str | None = None,
|
||||
index_col: str | None = None,
|
||||
col_order: list[str] | None = None,
|
||||
reauth: bool = False,
|
||||
auth_local_webserver: bool = True,
|
||||
dialect: str | None = None,
|
||||
location: str | None = None,
|
||||
configuration: dict[str, Any] | None = None,
|
||||
credentials: Credentials | None = None,
|
||||
use_bqstorage_api: bool | None = None,
|
||||
max_results: int | None = None,
|
||||
progress_bar_type: str | None = None,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load data from Google BigQuery.
|
||||
|
||||
.. deprecated:: 2.2.0
|
||||
|
||||
Please use ``pandas_gbq.read_gbq`` instead.
|
||||
|
||||
This function requires the `pandas-gbq package
|
||||
<https://pandas-gbq.readthedocs.io>`__.
|
||||
|
||||
See the `How to authenticate with Google BigQuery
|
||||
<https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__
|
||||
guide for authentication instructions.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
query : str
|
||||
SQL-Like Query to return data values.
|
||||
project_id : str, optional
|
||||
Google BigQuery Account project ID. Optional when available from
|
||||
the environment.
|
||||
index_col : str, optional
|
||||
Name of result column to use for index in results DataFrame.
|
||||
col_order : list(str), optional
|
||||
List of BigQuery column names in the desired order for results
|
||||
DataFrame.
|
||||
reauth : bool, default False
|
||||
Force Google BigQuery to re-authenticate the user. This is useful
|
||||
if multiple accounts are used.
|
||||
auth_local_webserver : bool, default True
|
||||
Use the `local webserver flow`_ instead of the `console flow`_
|
||||
when getting user credentials.
|
||||
|
||||
.. _local webserver flow:
|
||||
https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server
|
||||
.. _console flow:
|
||||
https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console
|
||||
|
||||
*New in version 0.2.0 of pandas-gbq*.
|
||||
|
||||
.. versionchanged:: 1.5.0
|
||||
Default value is changed to ``True``. Google has deprecated the
|
||||
``auth_local_webserver = False`` `"out of band" (copy-paste)
|
||||
flow
|
||||
<https://developers.googleblog.com/2022/02/making-oauth-flows-safer.html?m=1#disallowed-oob>`_.
|
||||
dialect : str, default 'legacy'
|
||||
Note: The default value is changing to 'standard' in a future version.
|
||||
|
||||
SQL syntax dialect to use. Value can be one of:
|
||||
|
||||
``'legacy'``
|
||||
Use BigQuery's legacy SQL dialect. For more information see
|
||||
`BigQuery Legacy SQL Reference
|
||||
<https://cloud.google.com/bigquery/docs/reference/legacy-sql>`__.
|
||||
``'standard'``
|
||||
Use BigQuery's standard SQL, which is
|
||||
compliant with the SQL 2011 standard. For more information
|
||||
see `BigQuery Standard SQL Reference
|
||||
<https://cloud.google.com/bigquery/docs/reference/standard-sql/>`__.
|
||||
location : str, optional
|
||||
Location where the query job should run. See the `BigQuery locations
|
||||
documentation
|
||||
<https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a
|
||||
list of available locations. The location must match that of any
|
||||
datasets used in the query.
|
||||
|
||||
*New in version 0.5.0 of pandas-gbq*.
|
||||
configuration : dict, optional
|
||||
Query config parameters for job processing.
|
||||
For example:
|
||||
|
||||
configuration = {'query': {'useQueryCache': False}}
|
||||
|
||||
For more information see `BigQuery REST API Reference
|
||||
<https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query>`__.
|
||||
credentials : google.auth.credentials.Credentials, optional
|
||||
Credentials for accessing Google APIs. Use this parameter to override
|
||||
default credentials, such as to use Compute Engine
|
||||
:class:`google.auth.compute_engine.Credentials` or Service Account
|
||||
:class:`google.oauth2.service_account.Credentials` directly.
|
||||
|
||||
*New in version 0.8.0 of pandas-gbq*.
|
||||
use_bqstorage_api : bool, default False
|
||||
Use the `BigQuery Storage API
|
||||
<https://cloud.google.com/bigquery/docs/reference/storage/>`__ to
|
||||
download query results quickly, but at an increased cost. To use this
|
||||
API, first `enable it in the Cloud Console
|
||||
<https://console.cloud.google.com/apis/library/bigquerystorage.googleapis.com>`__.
|
||||
You must also have the `bigquery.readsessions.create
|
||||
<https://cloud.google.com/bigquery/docs/access-control#roles>`__
|
||||
permission on the project you are billing queries to.
|
||||
|
||||
This feature requires version 0.10.0 or later of the ``pandas-gbq``
|
||||
package. It also requires the ``google-cloud-bigquery-storage`` and
|
||||
``fastavro`` packages.
|
||||
|
||||
max_results : int, optional
|
||||
If set, limit the maximum number of rows to fetch from the query
|
||||
results.
|
||||
|
||||
progress_bar_type : Optional, str
|
||||
If set, use the `tqdm <https://tqdm.github.io/>`__ library to
|
||||
display a progress bar while the data downloads. Install the
|
||||
``tqdm`` package to use this feature.
|
||||
|
||||
Possible values of ``progress_bar_type`` include:
|
||||
|
||||
``None``
|
||||
No progress bar.
|
||||
``'tqdm'``
|
||||
Use the :func:`tqdm.tqdm` function to print a progress bar
|
||||
to :data:`sys.stderr`.
|
||||
``'tqdm_notebook'``
|
||||
Use the :func:`tqdm.tqdm_notebook` function to display a
|
||||
progress bar as a Jupyter notebook widget.
|
||||
``'tqdm_gui'``
|
||||
Use the :func:`tqdm.tqdm_gui` function to display a
|
||||
progress bar as a graphical dialog box.
|
||||
|
||||
Returns
|
||||
-------
|
||||
df: DataFrame
|
||||
DataFrame representing results of query.
|
||||
|
||||
See Also
|
||||
--------
|
||||
pandas_gbq.read_gbq : This function in the pandas-gbq library.
|
||||
DataFrame.to_gbq : Write a DataFrame to Google BigQuery.
|
||||
|
||||
Examples
|
||||
--------
|
||||
Example taken from `Google BigQuery documentation
|
||||
<https://cloud.google.com/bigquery/docs/pandas-gbq-migration>`_
|
||||
|
||||
>>> sql = "SELECT name FROM table_name WHERE state = 'TX' LIMIT 100;"
|
||||
>>> df = pd.read_gbq(sql, dialect="standard") # doctest: +SKIP
|
||||
>>> project_id = "your-project-id" # doctest: +SKIP
|
||||
>>> df = pd.read_gbq(sql,
|
||||
... project_id=project_id,
|
||||
... dialect="standard"
|
||||
... ) # doctest: +SKIP
|
||||
"""
|
||||
warnings.warn(
|
||||
"read_gbq is deprecated and will be removed in a future version. "
|
||||
"Please use pandas_gbq.read_gbq instead: "
|
||||
"https://pandas-gbq.readthedocs.io/en/latest/api.html#pandas_gbq.read_gbq",
|
||||
FutureWarning,
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
pandas_gbq = _try_import()
|
||||
|
||||
kwargs: dict[str, str | bool | int | None] = {}
|
||||
|
||||
# START: new kwargs. Don't populate unless explicitly set.
|
||||
if use_bqstorage_api is not None:
|
||||
kwargs["use_bqstorage_api"] = use_bqstorage_api
|
||||
if max_results is not None:
|
||||
kwargs["max_results"] = max_results
|
||||
|
||||
kwargs["progress_bar_type"] = progress_bar_type
|
||||
# END: new kwargs
|
||||
|
||||
return pandas_gbq.read_gbq(
|
||||
query,
|
||||
project_id=project_id,
|
||||
index_col=index_col,
|
||||
col_order=col_order,
|
||||
reauth=reauth,
|
||||
auth_local_webserver=auth_local_webserver,
|
||||
dialect=dialect,
|
||||
location=location,
|
||||
configuration=configuration,
|
||||
credentials=credentials,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def to_gbq(
|
||||
dataframe: DataFrame,
|
||||
destination_table: str,
|
||||
project_id: str | None = None,
|
||||
chunksize: int | None = None,
|
||||
reauth: bool = False,
|
||||
if_exists: str = "fail",
|
||||
auth_local_webserver: bool = True,
|
||||
table_schema: list[dict[str, str]] | None = None,
|
||||
location: str | None = None,
|
||||
progress_bar: bool = True,
|
||||
credentials: Credentials | None = None,
|
||||
) -> None:
|
||||
warnings.warn(
|
||||
"to_gbq is deprecated and will be removed in a future version. "
|
||||
"Please use pandas_gbq.to_gbq instead: "
|
||||
"https://pandas-gbq.readthedocs.io/en/latest/api.html#pandas_gbq.to_gbq",
|
||||
FutureWarning,
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
pandas_gbq = _try_import()
|
||||
pandas_gbq.to_gbq(
|
||||
dataframe,
|
||||
destination_table,
|
||||
project_id=project_id,
|
||||
chunksize=chunksize,
|
||||
reauth=reauth,
|
||||
if_exists=if_exists,
|
||||
auth_local_webserver=auth_local_webserver,
|
||||
table_schema=table_schema,
|
||||
location=location,
|
||||
progress_bar=progress_bar,
|
||||
credentials=credentials,
|
||||
)
|
1259
venv/lib/python3.12/site-packages/pandas/io/html.py
Normal file
1259
venv/lib/python3.12/site-packages/pandas/io/html.py
Normal file
File diff suppressed because it is too large
Load Diff
15
venv/lib/python3.12/site-packages/pandas/io/json/__init__.py
Normal file
15
venv/lib/python3.12/site-packages/pandas/io/json/__init__.py
Normal file
@ -0,0 +1,15 @@
|
||||
from pandas.io.json._json import (
|
||||
read_json,
|
||||
to_json,
|
||||
ujson_dumps,
|
||||
ujson_loads,
|
||||
)
|
||||
from pandas.io.json._table_schema import build_table_schema
|
||||
|
||||
__all__ = [
|
||||
"ujson_dumps",
|
||||
"ujson_loads",
|
||||
"read_json",
|
||||
"to_json",
|
||||
"build_table_schema",
|
||||
]
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
1505
venv/lib/python3.12/site-packages/pandas/io/json/_json.py
Normal file
1505
venv/lib/python3.12/site-packages/pandas/io/json/_json.py
Normal file
File diff suppressed because it is too large
Load Diff
544
venv/lib/python3.12/site-packages/pandas/io/json/_normalize.py
Normal file
544
venv/lib/python3.12/site-packages/pandas/io/json/_normalize.py
Normal file
@ -0,0 +1,544 @@
|
||||
# ---------------------------------------------------------------------
|
||||
# JSON normalization routines
|
||||
from __future__ import annotations
|
||||
|
||||
from collections import (
|
||||
abc,
|
||||
defaultdict,
|
||||
)
|
||||
import copy
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
DefaultDict,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas._libs.writers import convert_json_to_lines
|
||||
|
||||
import pandas as pd
|
||||
from pandas import DataFrame
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from collections.abc import Iterable
|
||||
|
||||
from pandas._typing import (
|
||||
IgnoreRaise,
|
||||
Scalar,
|
||||
)
|
||||
|
||||
|
||||
def convert_to_line_delimits(s: str) -> str:
|
||||
"""
|
||||
Helper function that converts JSON lists to line delimited JSON.
|
||||
"""
|
||||
# Determine we have a JSON list to turn to lines otherwise just return the
|
||||
# json object, only lists can
|
||||
if not s[0] == "[" and s[-1] == "]":
|
||||
return s
|
||||
s = s[1:-1]
|
||||
|
||||
return convert_json_to_lines(s)
|
||||
|
||||
|
||||
def nested_to_record(
|
||||
ds,
|
||||
prefix: str = "",
|
||||
sep: str = ".",
|
||||
level: int = 0,
|
||||
max_level: int | None = None,
|
||||
):
|
||||
"""
|
||||
A simplified json_normalize
|
||||
|
||||
Converts a nested dict into a flat dict ("record"), unlike json_normalize,
|
||||
it does not attempt to extract a subset of the data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ds : dict or list of dicts
|
||||
prefix: the prefix, optional, default: ""
|
||||
sep : str, default '.'
|
||||
Nested records will generate names separated by sep,
|
||||
e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
|
||||
level: int, optional, default: 0
|
||||
The number of levels in the json string.
|
||||
|
||||
max_level: int, optional, default: None
|
||||
The max depth to normalize.
|
||||
|
||||
Returns
|
||||
-------
|
||||
d - dict or list of dicts, matching `ds`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> nested_to_record(
|
||||
... dict(flat1=1, dict1=dict(c=1, d=2), nested=dict(e=dict(c=1, d=2), d=2))
|
||||
... )
|
||||
{\
|
||||
'flat1': 1, \
|
||||
'dict1.c': 1, \
|
||||
'dict1.d': 2, \
|
||||
'nested.e.c': 1, \
|
||||
'nested.e.d': 2, \
|
||||
'nested.d': 2\
|
||||
}
|
||||
"""
|
||||
singleton = False
|
||||
if isinstance(ds, dict):
|
||||
ds = [ds]
|
||||
singleton = True
|
||||
new_ds = []
|
||||
for d in ds:
|
||||
new_d = copy.deepcopy(d)
|
||||
for k, v in d.items():
|
||||
# each key gets renamed with prefix
|
||||
if not isinstance(k, str):
|
||||
k = str(k)
|
||||
if level == 0:
|
||||
newkey = k
|
||||
else:
|
||||
newkey = prefix + sep + k
|
||||
|
||||
# flatten if type is dict and
|
||||
# current dict level < maximum level provided and
|
||||
# only dicts gets recurse-flattened
|
||||
# only at level>1 do we rename the rest of the keys
|
||||
if not isinstance(v, dict) or (
|
||||
max_level is not None and level >= max_level
|
||||
):
|
||||
if level != 0: # so we skip copying for top level, common case
|
||||
v = new_d.pop(k)
|
||||
new_d[newkey] = v
|
||||
continue
|
||||
|
||||
v = new_d.pop(k)
|
||||
new_d.update(nested_to_record(v, newkey, sep, level + 1, max_level))
|
||||
new_ds.append(new_d)
|
||||
|
||||
if singleton:
|
||||
return new_ds[0]
|
||||
return new_ds
|
||||
|
||||
|
||||
def _normalise_json(
|
||||
data: Any,
|
||||
key_string: str,
|
||||
normalized_dict: dict[str, Any],
|
||||
separator: str,
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Main recursive function
|
||||
Designed for the most basic use case of pd.json_normalize(data)
|
||||
intended as a performance improvement, see #15621
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : Any
|
||||
Type dependent on types contained within nested Json
|
||||
key_string : str
|
||||
New key (with separator(s) in) for data
|
||||
normalized_dict : dict
|
||||
The new normalized/flattened Json dict
|
||||
separator : str, default '.'
|
||||
Nested records will generate names separated by sep,
|
||||
e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
|
||||
"""
|
||||
if isinstance(data, dict):
|
||||
for key, value in data.items():
|
||||
new_key = f"{key_string}{separator}{key}"
|
||||
|
||||
if not key_string:
|
||||
new_key = new_key.removeprefix(separator)
|
||||
|
||||
_normalise_json(
|
||||
data=value,
|
||||
key_string=new_key,
|
||||
normalized_dict=normalized_dict,
|
||||
separator=separator,
|
||||
)
|
||||
else:
|
||||
normalized_dict[key_string] = data
|
||||
return normalized_dict
|
||||
|
||||
|
||||
def _normalise_json_ordered(data: dict[str, Any], separator: str) -> dict[str, Any]:
|
||||
"""
|
||||
Order the top level keys and then recursively go to depth
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : dict or list of dicts
|
||||
separator : str, default '.'
|
||||
Nested records will generate names separated by sep,
|
||||
e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict or list of dicts, matching `normalised_json_object`
|
||||
"""
|
||||
top_dict_ = {k: v for k, v in data.items() if not isinstance(v, dict)}
|
||||
nested_dict_ = _normalise_json(
|
||||
data={k: v for k, v in data.items() if isinstance(v, dict)},
|
||||
key_string="",
|
||||
normalized_dict={},
|
||||
separator=separator,
|
||||
)
|
||||
return {**top_dict_, **nested_dict_}
|
||||
|
||||
|
||||
def _simple_json_normalize(
|
||||
ds: dict | list[dict],
|
||||
sep: str = ".",
|
||||
) -> dict | list[dict] | Any:
|
||||
"""
|
||||
A optimized basic json_normalize
|
||||
|
||||
Converts a nested dict into a flat dict ("record"), unlike
|
||||
json_normalize and nested_to_record it doesn't do anything clever.
|
||||
But for the most basic use cases it enhances performance.
|
||||
E.g. pd.json_normalize(data)
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ds : dict or list of dicts
|
||||
sep : str, default '.'
|
||||
Nested records will generate names separated by sep,
|
||||
e.g., for sep='.', { 'foo' : { 'bar' : 0 } } -> foo.bar
|
||||
|
||||
Returns
|
||||
-------
|
||||
frame : DataFrame
|
||||
d - dict or list of dicts, matching `normalised_json_object`
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> _simple_json_normalize(
|
||||
... {
|
||||
... "flat1": 1,
|
||||
... "dict1": {"c": 1, "d": 2},
|
||||
... "nested": {"e": {"c": 1, "d": 2}, "d": 2},
|
||||
... }
|
||||
... )
|
||||
{\
|
||||
'flat1': 1, \
|
||||
'dict1.c': 1, \
|
||||
'dict1.d': 2, \
|
||||
'nested.e.c': 1, \
|
||||
'nested.e.d': 2, \
|
||||
'nested.d': 2\
|
||||
}
|
||||
|
||||
"""
|
||||
normalised_json_object = {}
|
||||
# expect a dictionary, as most jsons are. However, lists are perfectly valid
|
||||
if isinstance(ds, dict):
|
||||
normalised_json_object = _normalise_json_ordered(data=ds, separator=sep)
|
||||
elif isinstance(ds, list):
|
||||
normalised_json_list = [_simple_json_normalize(row, sep=sep) for row in ds]
|
||||
return normalised_json_list
|
||||
return normalised_json_object
|
||||
|
||||
|
||||
def json_normalize(
|
||||
data: dict | list[dict],
|
||||
record_path: str | list | None = None,
|
||||
meta: str | list[str | list[str]] | None = None,
|
||||
meta_prefix: str | None = None,
|
||||
record_prefix: str | None = None,
|
||||
errors: IgnoreRaise = "raise",
|
||||
sep: str = ".",
|
||||
max_level: int | None = None,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Normalize semi-structured JSON data into a flat table.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : dict or list of dicts
|
||||
Unserialized JSON objects.
|
||||
record_path : str or list of str, default None
|
||||
Path in each object to list of records. If not passed, data will be
|
||||
assumed to be an array of records.
|
||||
meta : list of paths (str or list of str), default None
|
||||
Fields to use as metadata for each record in resulting table.
|
||||
meta_prefix : str, default None
|
||||
If True, prefix records with dotted (?) path, e.g. foo.bar.field if
|
||||
meta is ['foo', 'bar'].
|
||||
record_prefix : str, default None
|
||||
If True, prefix records with dotted (?) path, e.g. foo.bar.field if
|
||||
path to records is ['foo', 'bar'].
|
||||
errors : {'raise', 'ignore'}, default 'raise'
|
||||
Configures error handling.
|
||||
|
||||
* 'ignore' : will ignore KeyError if keys listed in meta are not
|
||||
always present.
|
||||
* 'raise' : will raise KeyError if keys listed in meta are not
|
||||
always present.
|
||||
sep : str, default '.'
|
||||
Nested records will generate names separated by sep.
|
||||
e.g., for sep='.', {'foo': {'bar': 0}} -> foo.bar.
|
||||
max_level : int, default None
|
||||
Max number of levels(depth of dict) to normalize.
|
||||
if None, normalizes all levels.
|
||||
|
||||
Returns
|
||||
-------
|
||||
frame : DataFrame
|
||||
Normalize semi-structured JSON data into a flat table.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> data = [
|
||||
... {"id": 1, "name": {"first": "Coleen", "last": "Volk"}},
|
||||
... {"name": {"given": "Mark", "family": "Regner"}},
|
||||
... {"id": 2, "name": "Faye Raker"},
|
||||
... ]
|
||||
>>> pd.json_normalize(data)
|
||||
id name.first name.last name.given name.family name
|
||||
0 1.0 Coleen Volk NaN NaN NaN
|
||||
1 NaN NaN NaN Mark Regner NaN
|
||||
2 2.0 NaN NaN NaN NaN Faye Raker
|
||||
|
||||
>>> data = [
|
||||
... {
|
||||
... "id": 1,
|
||||
... "name": "Cole Volk",
|
||||
... "fitness": {"height": 130, "weight": 60},
|
||||
... },
|
||||
... {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}},
|
||||
... {
|
||||
... "id": 2,
|
||||
... "name": "Faye Raker",
|
||||
... "fitness": {"height": 130, "weight": 60},
|
||||
... },
|
||||
... ]
|
||||
>>> pd.json_normalize(data, max_level=0)
|
||||
id name fitness
|
||||
0 1.0 Cole Volk {'height': 130, 'weight': 60}
|
||||
1 NaN Mark Reg {'height': 130, 'weight': 60}
|
||||
2 2.0 Faye Raker {'height': 130, 'weight': 60}
|
||||
|
||||
Normalizes nested data up to level 1.
|
||||
|
||||
>>> data = [
|
||||
... {
|
||||
... "id": 1,
|
||||
... "name": "Cole Volk",
|
||||
... "fitness": {"height": 130, "weight": 60},
|
||||
... },
|
||||
... {"name": "Mark Reg", "fitness": {"height": 130, "weight": 60}},
|
||||
... {
|
||||
... "id": 2,
|
||||
... "name": "Faye Raker",
|
||||
... "fitness": {"height": 130, "weight": 60},
|
||||
... },
|
||||
... ]
|
||||
>>> pd.json_normalize(data, max_level=1)
|
||||
id name fitness.height fitness.weight
|
||||
0 1.0 Cole Volk 130 60
|
||||
1 NaN Mark Reg 130 60
|
||||
2 2.0 Faye Raker 130 60
|
||||
|
||||
>>> data = [
|
||||
... {
|
||||
... "state": "Florida",
|
||||
... "shortname": "FL",
|
||||
... "info": {"governor": "Rick Scott"},
|
||||
... "counties": [
|
||||
... {"name": "Dade", "population": 12345},
|
||||
... {"name": "Broward", "population": 40000},
|
||||
... {"name": "Palm Beach", "population": 60000},
|
||||
... ],
|
||||
... },
|
||||
... {
|
||||
... "state": "Ohio",
|
||||
... "shortname": "OH",
|
||||
... "info": {"governor": "John Kasich"},
|
||||
... "counties": [
|
||||
... {"name": "Summit", "population": 1234},
|
||||
... {"name": "Cuyahoga", "population": 1337},
|
||||
... ],
|
||||
... },
|
||||
... ]
|
||||
>>> result = pd.json_normalize(
|
||||
... data, "counties", ["state", "shortname", ["info", "governor"]]
|
||||
... )
|
||||
>>> result
|
||||
name population state shortname info.governor
|
||||
0 Dade 12345 Florida FL Rick Scott
|
||||
1 Broward 40000 Florida FL Rick Scott
|
||||
2 Palm Beach 60000 Florida FL Rick Scott
|
||||
3 Summit 1234 Ohio OH John Kasich
|
||||
4 Cuyahoga 1337 Ohio OH John Kasich
|
||||
|
||||
>>> data = {"A": [1, 2]}
|
||||
>>> pd.json_normalize(data, "A", record_prefix="Prefix.")
|
||||
Prefix.0
|
||||
0 1
|
||||
1 2
|
||||
|
||||
Returns normalized data with columns prefixed with the given string.
|
||||
"""
|
||||
|
||||
def _pull_field(
|
||||
js: dict[str, Any], spec: list | str, extract_record: bool = False
|
||||
) -> Scalar | Iterable:
|
||||
"""Internal function to pull field"""
|
||||
result = js
|
||||
try:
|
||||
if isinstance(spec, list):
|
||||
for field in spec:
|
||||
if result is None:
|
||||
raise KeyError(field)
|
||||
result = result[field]
|
||||
else:
|
||||
result = result[spec]
|
||||
except KeyError as e:
|
||||
if extract_record:
|
||||
raise KeyError(
|
||||
f"Key {e} not found. If specifying a record_path, all elements of "
|
||||
f"data should have the path."
|
||||
) from e
|
||||
if errors == "ignore":
|
||||
return np.nan
|
||||
else:
|
||||
raise KeyError(
|
||||
f"Key {e} not found. To replace missing values of {e} with "
|
||||
f"np.nan, pass in errors='ignore'"
|
||||
) from e
|
||||
|
||||
return result
|
||||
|
||||
def _pull_records(js: dict[str, Any], spec: list | str) -> list:
|
||||
"""
|
||||
Internal function to pull field for records, and similar to
|
||||
_pull_field, but require to return list. And will raise error
|
||||
if has non iterable value.
|
||||
"""
|
||||
result = _pull_field(js, spec, extract_record=True)
|
||||
|
||||
# GH 31507 GH 30145, GH 26284 if result is not list, raise TypeError if not
|
||||
# null, otherwise return an empty list
|
||||
if not isinstance(result, list):
|
||||
if pd.isnull(result):
|
||||
result = []
|
||||
else:
|
||||
raise TypeError(
|
||||
f"{js} has non list value {result} for path {spec}. "
|
||||
"Must be list or null."
|
||||
)
|
||||
return result
|
||||
|
||||
if isinstance(data, list) and not data:
|
||||
return DataFrame()
|
||||
elif isinstance(data, dict):
|
||||
# A bit of a hackjob
|
||||
data = [data]
|
||||
elif isinstance(data, abc.Iterable) and not isinstance(data, str):
|
||||
# GH35923 Fix pd.json_normalize to not skip the first element of a
|
||||
# generator input
|
||||
data = list(data)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
# check to see if a simple recursive function is possible to
|
||||
# improve performance (see #15621) but only for cases such
|
||||
# as pd.Dataframe(data) or pd.Dataframe(data, sep)
|
||||
if (
|
||||
record_path is None
|
||||
and meta is None
|
||||
and meta_prefix is None
|
||||
and record_prefix is None
|
||||
and max_level is None
|
||||
):
|
||||
return DataFrame(_simple_json_normalize(data, sep=sep))
|
||||
|
||||
if record_path is None:
|
||||
if any([isinstance(x, dict) for x in y.values()] for y in data):
|
||||
# naive normalization, this is idempotent for flat records
|
||||
# and potentially will inflate the data considerably for
|
||||
# deeply nested structures:
|
||||
# {VeryLong: { b: 1,c:2}} -> {VeryLong.b:1 ,VeryLong.c:@}
|
||||
#
|
||||
# TODO: handle record value which are lists, at least error
|
||||
# reasonably
|
||||
data = nested_to_record(data, sep=sep, max_level=max_level)
|
||||
return DataFrame(data)
|
||||
elif not isinstance(record_path, list):
|
||||
record_path = [record_path]
|
||||
|
||||
if meta is None:
|
||||
meta = []
|
||||
elif not isinstance(meta, list):
|
||||
meta = [meta]
|
||||
|
||||
_meta = [m if isinstance(m, list) else [m] for m in meta]
|
||||
|
||||
# Disastrously inefficient for now
|
||||
records: list = []
|
||||
lengths = []
|
||||
|
||||
meta_vals: DefaultDict = defaultdict(list)
|
||||
meta_keys = [sep.join(val) for val in _meta]
|
||||
|
||||
def _recursive_extract(data, path, seen_meta, level: int = 0) -> None:
|
||||
if isinstance(data, dict):
|
||||
data = [data]
|
||||
if len(path) > 1:
|
||||
for obj in data:
|
||||
for val, key in zip(_meta, meta_keys):
|
||||
if level + 1 == len(val):
|
||||
seen_meta[key] = _pull_field(obj, val[-1])
|
||||
|
||||
_recursive_extract(obj[path[0]], path[1:], seen_meta, level=level + 1)
|
||||
else:
|
||||
for obj in data:
|
||||
recs = _pull_records(obj, path[0])
|
||||
recs = [
|
||||
nested_to_record(r, sep=sep, max_level=max_level)
|
||||
if isinstance(r, dict)
|
||||
else r
|
||||
for r in recs
|
||||
]
|
||||
|
||||
# For repeating the metadata later
|
||||
lengths.append(len(recs))
|
||||
for val, key in zip(_meta, meta_keys):
|
||||
if level + 1 > len(val):
|
||||
meta_val = seen_meta[key]
|
||||
else:
|
||||
meta_val = _pull_field(obj, val[level:])
|
||||
meta_vals[key].append(meta_val)
|
||||
records.extend(recs)
|
||||
|
||||
_recursive_extract(data, record_path, {}, level=0)
|
||||
|
||||
result = DataFrame(records)
|
||||
|
||||
if record_prefix is not None:
|
||||
result = result.rename(columns=lambda x: f"{record_prefix}{x}")
|
||||
|
||||
# Data types, a problem
|
||||
for k, v in meta_vals.items():
|
||||
if meta_prefix is not None:
|
||||
k = meta_prefix + k
|
||||
|
||||
if k in result:
|
||||
raise ValueError(
|
||||
f"Conflicting metadata name {k}, need distinguishing prefix "
|
||||
)
|
||||
# GH 37782
|
||||
|
||||
values = np.array(v, dtype=object)
|
||||
|
||||
if values.ndim > 1:
|
||||
# GH 37782
|
||||
values = np.empty((len(v),), dtype=object)
|
||||
for i, v in enumerate(v):
|
||||
values[i] = v
|
||||
|
||||
result[k] = values.repeat(lengths)
|
||||
return result
|
@ -0,0 +1,389 @@
|
||||
"""
|
||||
Table Schema builders
|
||||
|
||||
https://specs.frictionlessdata.io/table-schema/
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
cast,
|
||||
)
|
||||
import warnings
|
||||
|
||||
from pandas._libs import lib
|
||||
from pandas._libs.json import ujson_loads
|
||||
from pandas._libs.tslibs import timezones
|
||||
from pandas._libs.tslibs.dtypes import freq_to_period_freqstr
|
||||
from pandas.util._exceptions import find_stack_level
|
||||
|
||||
from pandas.core.dtypes.base import _registry as registry
|
||||
from pandas.core.dtypes.common import (
|
||||
is_bool_dtype,
|
||||
is_integer_dtype,
|
||||
is_numeric_dtype,
|
||||
is_string_dtype,
|
||||
)
|
||||
from pandas.core.dtypes.dtypes import (
|
||||
CategoricalDtype,
|
||||
DatetimeTZDtype,
|
||||
ExtensionDtype,
|
||||
PeriodDtype,
|
||||
)
|
||||
|
||||
from pandas import DataFrame
|
||||
import pandas.core.common as com
|
||||
|
||||
from pandas.tseries.frequencies import to_offset
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pandas._typing import (
|
||||
DtypeObj,
|
||||
JSONSerializable,
|
||||
)
|
||||
|
||||
from pandas import Series
|
||||
from pandas.core.indexes.multi import MultiIndex
|
||||
|
||||
|
||||
TABLE_SCHEMA_VERSION = "1.4.0"
|
||||
|
||||
|
||||
def as_json_table_type(x: DtypeObj) -> str:
|
||||
"""
|
||||
Convert a NumPy / pandas type to its corresponding json_table.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : np.dtype or ExtensionDtype
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
the Table Schema data types
|
||||
|
||||
Notes
|
||||
-----
|
||||
This table shows the relationship between NumPy / pandas dtypes,
|
||||
and Table Schema dtypes.
|
||||
|
||||
============== =================
|
||||
Pandas type Table Schema type
|
||||
============== =================
|
||||
int64 integer
|
||||
float64 number
|
||||
bool boolean
|
||||
datetime64[ns] datetime
|
||||
timedelta64[ns] duration
|
||||
object str
|
||||
categorical any
|
||||
=============== =================
|
||||
"""
|
||||
if is_integer_dtype(x):
|
||||
return "integer"
|
||||
elif is_bool_dtype(x):
|
||||
return "boolean"
|
||||
elif is_numeric_dtype(x):
|
||||
return "number"
|
||||
elif lib.is_np_dtype(x, "M") or isinstance(x, (DatetimeTZDtype, PeriodDtype)):
|
||||
return "datetime"
|
||||
elif lib.is_np_dtype(x, "m"):
|
||||
return "duration"
|
||||
elif isinstance(x, ExtensionDtype):
|
||||
return "any"
|
||||
elif is_string_dtype(x):
|
||||
return "string"
|
||||
else:
|
||||
return "any"
|
||||
|
||||
|
||||
def set_default_names(data):
|
||||
"""Sets index names to 'index' for regular, or 'level_x' for Multi"""
|
||||
if com.all_not_none(*data.index.names):
|
||||
nms = data.index.names
|
||||
if len(nms) == 1 and data.index.name == "index":
|
||||
warnings.warn(
|
||||
"Index name of 'index' is not round-trippable.",
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
elif len(nms) > 1 and any(x.startswith("level_") for x in nms):
|
||||
warnings.warn(
|
||||
"Index names beginning with 'level_' are not round-trippable.",
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
return data
|
||||
|
||||
data = data.copy()
|
||||
if data.index.nlevels > 1:
|
||||
data.index.names = com.fill_missing_names(data.index.names)
|
||||
else:
|
||||
data.index.name = data.index.name or "index"
|
||||
return data
|
||||
|
||||
|
||||
def convert_pandas_type_to_json_field(arr) -> dict[str, JSONSerializable]:
|
||||
dtype = arr.dtype
|
||||
name: JSONSerializable
|
||||
if arr.name is None:
|
||||
name = "values"
|
||||
else:
|
||||
name = arr.name
|
||||
field: dict[str, JSONSerializable] = {
|
||||
"name": name,
|
||||
"type": as_json_table_type(dtype),
|
||||
}
|
||||
|
||||
if isinstance(dtype, CategoricalDtype):
|
||||
cats = dtype.categories
|
||||
ordered = dtype.ordered
|
||||
|
||||
field["constraints"] = {"enum": list(cats)}
|
||||
field["ordered"] = ordered
|
||||
elif isinstance(dtype, PeriodDtype):
|
||||
field["freq"] = dtype.freq.freqstr
|
||||
elif isinstance(dtype, DatetimeTZDtype):
|
||||
if timezones.is_utc(dtype.tz):
|
||||
# timezone.utc has no "zone" attr
|
||||
field["tz"] = "UTC"
|
||||
else:
|
||||
# error: "tzinfo" has no attribute "zone"
|
||||
field["tz"] = dtype.tz.zone # type: ignore[attr-defined]
|
||||
elif isinstance(dtype, ExtensionDtype):
|
||||
field["extDtype"] = dtype.name
|
||||
return field
|
||||
|
||||
|
||||
def convert_json_field_to_pandas_type(field) -> str | CategoricalDtype:
|
||||
"""
|
||||
Converts a JSON field descriptor into its corresponding NumPy / pandas type
|
||||
|
||||
Parameters
|
||||
----------
|
||||
field
|
||||
A JSON field descriptor
|
||||
|
||||
Returns
|
||||
-------
|
||||
dtype
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If the type of the provided field is unknown or currently unsupported
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> convert_json_field_to_pandas_type({"name": "an_int", "type": "integer"})
|
||||
'int64'
|
||||
|
||||
>>> convert_json_field_to_pandas_type(
|
||||
... {
|
||||
... "name": "a_categorical",
|
||||
... "type": "any",
|
||||
... "constraints": {"enum": ["a", "b", "c"]},
|
||||
... "ordered": True,
|
||||
... }
|
||||
... )
|
||||
CategoricalDtype(categories=['a', 'b', 'c'], ordered=True, categories_dtype=object)
|
||||
|
||||
>>> convert_json_field_to_pandas_type({"name": "a_datetime", "type": "datetime"})
|
||||
'datetime64[ns]'
|
||||
|
||||
>>> convert_json_field_to_pandas_type(
|
||||
... {"name": "a_datetime_with_tz", "type": "datetime", "tz": "US/Central"}
|
||||
... )
|
||||
'datetime64[ns, US/Central]'
|
||||
"""
|
||||
typ = field["type"]
|
||||
if typ == "string":
|
||||
return "object"
|
||||
elif typ == "integer":
|
||||
return field.get("extDtype", "int64")
|
||||
elif typ == "number":
|
||||
return field.get("extDtype", "float64")
|
||||
elif typ == "boolean":
|
||||
return field.get("extDtype", "bool")
|
||||
elif typ == "duration":
|
||||
return "timedelta64"
|
||||
elif typ == "datetime":
|
||||
if field.get("tz"):
|
||||
return f"datetime64[ns, {field['tz']}]"
|
||||
elif field.get("freq"):
|
||||
# GH#9586 rename frequency M to ME for offsets
|
||||
offset = to_offset(field["freq"])
|
||||
freq_n, freq_name = offset.n, offset.name
|
||||
freq = freq_to_period_freqstr(freq_n, freq_name)
|
||||
# GH#47747 using datetime over period to minimize the change surface
|
||||
return f"period[{freq}]"
|
||||
else:
|
||||
return "datetime64[ns]"
|
||||
elif typ == "any":
|
||||
if "constraints" in field and "ordered" in field:
|
||||
return CategoricalDtype(
|
||||
categories=field["constraints"]["enum"], ordered=field["ordered"]
|
||||
)
|
||||
elif "extDtype" in field:
|
||||
return registry.find(field["extDtype"])
|
||||
else:
|
||||
return "object"
|
||||
|
||||
raise ValueError(f"Unsupported or invalid field type: {typ}")
|
||||
|
||||
|
||||
def build_table_schema(
|
||||
data: DataFrame | Series,
|
||||
index: bool = True,
|
||||
primary_key: bool | None = None,
|
||||
version: bool = True,
|
||||
) -> dict[str, JSONSerializable]:
|
||||
"""
|
||||
Create a Table schema from ``data``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : Series, DataFrame
|
||||
index : bool, default True
|
||||
Whether to include ``data.index`` in the schema.
|
||||
primary_key : bool or None, default True
|
||||
Column names to designate as the primary key.
|
||||
The default `None` will set `'primaryKey'` to the index
|
||||
level or levels if the index is unique.
|
||||
version : bool, default True
|
||||
Whether to include a field `pandas_version` with the version
|
||||
of pandas that last revised the table schema. This version
|
||||
can be different from the installed pandas version.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dict
|
||||
|
||||
Notes
|
||||
-----
|
||||
See `Table Schema
|
||||
<https://pandas.pydata.org/docs/user_guide/io.html#table-schema>`__ for
|
||||
conversion types.
|
||||
Timedeltas as converted to ISO8601 duration format with
|
||||
9 decimal places after the seconds field for nanosecond precision.
|
||||
|
||||
Categoricals are converted to the `any` dtype, and use the `enum` field
|
||||
constraint to list the allowed values. The `ordered` attribute is included
|
||||
in an `ordered` field.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from pandas.io.json._table_schema import build_table_schema
|
||||
>>> df = pd.DataFrame(
|
||||
... {'A': [1, 2, 3],
|
||||
... 'B': ['a', 'b', 'c'],
|
||||
... 'C': pd.date_range('2016-01-01', freq='d', periods=3),
|
||||
... }, index=pd.Index(range(3), name='idx'))
|
||||
>>> build_table_schema(df)
|
||||
{'fields': \
|
||||
[{'name': 'idx', 'type': 'integer'}, \
|
||||
{'name': 'A', 'type': 'integer'}, \
|
||||
{'name': 'B', 'type': 'string'}, \
|
||||
{'name': 'C', 'type': 'datetime'}], \
|
||||
'primaryKey': ['idx'], \
|
||||
'pandas_version': '1.4.0'}
|
||||
"""
|
||||
if index is True:
|
||||
data = set_default_names(data)
|
||||
|
||||
schema: dict[str, Any] = {}
|
||||
fields = []
|
||||
|
||||
if index:
|
||||
if data.index.nlevels > 1:
|
||||
data.index = cast("MultiIndex", data.index)
|
||||
for level, name in zip(data.index.levels, data.index.names):
|
||||
new_field = convert_pandas_type_to_json_field(level)
|
||||
new_field["name"] = name
|
||||
fields.append(new_field)
|
||||
else:
|
||||
fields.append(convert_pandas_type_to_json_field(data.index))
|
||||
|
||||
if data.ndim > 1:
|
||||
for column, s in data.items():
|
||||
fields.append(convert_pandas_type_to_json_field(s))
|
||||
else:
|
||||
fields.append(convert_pandas_type_to_json_field(data))
|
||||
|
||||
schema["fields"] = fields
|
||||
if index and data.index.is_unique and primary_key is None:
|
||||
if data.index.nlevels == 1:
|
||||
schema["primaryKey"] = [data.index.name]
|
||||
else:
|
||||
schema["primaryKey"] = data.index.names
|
||||
elif primary_key is not None:
|
||||
schema["primaryKey"] = primary_key
|
||||
|
||||
if version:
|
||||
schema["pandas_version"] = TABLE_SCHEMA_VERSION
|
||||
return schema
|
||||
|
||||
|
||||
def parse_table_schema(json, precise_float: bool) -> DataFrame:
|
||||
"""
|
||||
Builds a DataFrame from a given schema
|
||||
|
||||
Parameters
|
||||
----------
|
||||
json :
|
||||
A JSON table schema
|
||||
precise_float : bool
|
||||
Flag controlling precision when decoding string to double values, as
|
||||
dictated by ``read_json``
|
||||
|
||||
Returns
|
||||
-------
|
||||
df : DataFrame
|
||||
|
||||
Raises
|
||||
------
|
||||
NotImplementedError
|
||||
If the JSON table schema contains either timezone or timedelta data
|
||||
|
||||
Notes
|
||||
-----
|
||||
Because :func:`DataFrame.to_json` uses the string 'index' to denote a
|
||||
name-less :class:`Index`, this function sets the name of the returned
|
||||
:class:`DataFrame` to ``None`` when said string is encountered with a
|
||||
normal :class:`Index`. For a :class:`MultiIndex`, the same limitation
|
||||
applies to any strings beginning with 'level_'. Therefore, an
|
||||
:class:`Index` name of 'index' and :class:`MultiIndex` names starting
|
||||
with 'level_' are not supported.
|
||||
|
||||
See Also
|
||||
--------
|
||||
build_table_schema : Inverse function.
|
||||
pandas.read_json
|
||||
"""
|
||||
table = ujson_loads(json, precise_float=precise_float)
|
||||
col_order = [field["name"] for field in table["schema"]["fields"]]
|
||||
df = DataFrame(table["data"], columns=col_order)[col_order]
|
||||
|
||||
dtypes = {
|
||||
field["name"]: convert_json_field_to_pandas_type(field)
|
||||
for field in table["schema"]["fields"]
|
||||
}
|
||||
|
||||
# No ISO constructor for Timedelta as of yet, so need to raise
|
||||
if "timedelta64" in dtypes.values():
|
||||
raise NotImplementedError(
|
||||
'table="orient" can not yet read ISO-formatted Timedelta data'
|
||||
)
|
||||
|
||||
df = df.astype(dtypes)
|
||||
|
||||
if "primaryKey" in table["schema"]:
|
||||
df = df.set_index(table["schema"]["primaryKey"])
|
||||
if len(df.index.names) == 1:
|
||||
if df.index.name == "index":
|
||||
df.index.name = None
|
||||
else:
|
||||
df.index.names = [
|
||||
None if x.startswith("level_") else x for x in df.index.names
|
||||
]
|
||||
|
||||
return df
|
245
venv/lib/python3.12/site-packages/pandas/io/orc.py
Normal file
245
venv/lib/python3.12/site-packages/pandas/io/orc.py
Normal file
@ -0,0 +1,245 @@
|
||||
""" orc compat """
|
||||
from __future__ import annotations
|
||||
|
||||
import io
|
||||
from types import ModuleType
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Literal,
|
||||
)
|
||||
|
||||
from pandas._config import using_pyarrow_string_dtype
|
||||
|
||||
from pandas._libs import lib
|
||||
from pandas.compat._optional import import_optional_dependency
|
||||
from pandas.util._validators import check_dtype_backend
|
||||
|
||||
import pandas as pd
|
||||
from pandas.core.indexes.api import default_index
|
||||
|
||||
from pandas.io._util import arrow_string_types_mapper
|
||||
from pandas.io.common import (
|
||||
get_handle,
|
||||
is_fsspec_url,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import fsspec
|
||||
import pyarrow.fs
|
||||
|
||||
from pandas._typing import (
|
||||
DtypeBackend,
|
||||
FilePath,
|
||||
ReadBuffer,
|
||||
WriteBuffer,
|
||||
)
|
||||
|
||||
from pandas.core.frame import DataFrame
|
||||
|
||||
|
||||
def read_orc(
|
||||
path: FilePath | ReadBuffer[bytes],
|
||||
columns: list[str] | None = None,
|
||||
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
|
||||
filesystem: pyarrow.fs.FileSystem | fsspec.spec.AbstractFileSystem | None = None,
|
||||
**kwargs: Any,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load an ORC object from the file path, returning a DataFrame.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path : str, path object, or file-like object
|
||||
String, path object (implementing ``os.PathLike[str]``), or file-like
|
||||
object implementing a binary ``read()`` function. The string could be a URL.
|
||||
Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is
|
||||
expected. A local file could be:
|
||||
``file://localhost/path/to/table.orc``.
|
||||
columns : list, default None
|
||||
If not None, only these columns will be read from the file.
|
||||
Output always follows the ordering of the file and not the columns list.
|
||||
This mirrors the original behaviour of
|
||||
:external+pyarrow:py:meth:`pyarrow.orc.ORCFile.read`.
|
||||
dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable'
|
||||
Back-end data type applied to the resultant :class:`DataFrame`
|
||||
(still experimental). Behaviour is as follows:
|
||||
|
||||
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
|
||||
(default).
|
||||
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
|
||||
DataFrame.
|
||||
|
||||
.. versionadded:: 2.0
|
||||
|
||||
filesystem : fsspec or pyarrow filesystem, default None
|
||||
Filesystem object to use when reading the parquet file.
|
||||
|
||||
.. versionadded:: 2.1.0
|
||||
|
||||
**kwargs
|
||||
Any additional kwargs are passed to pyarrow.
|
||||
|
||||
Returns
|
||||
-------
|
||||
DataFrame
|
||||
|
||||
Notes
|
||||
-----
|
||||
Before using this function you should read the :ref:`user guide about ORC <io.orc>`
|
||||
and :ref:`install optional dependencies <install.warn_orc>`.
|
||||
|
||||
If ``path`` is a URI scheme pointing to a local or remote file (e.g. "s3://"),
|
||||
a ``pyarrow.fs`` filesystem will be attempted to read the file. You can also pass a
|
||||
pyarrow or fsspec filesystem object into the filesystem keyword to override this
|
||||
behavior.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> result = pd.read_orc("example_pa.orc") # doctest: +SKIP
|
||||
"""
|
||||
# we require a newer version of pyarrow than we support for parquet
|
||||
|
||||
orc = import_optional_dependency("pyarrow.orc")
|
||||
|
||||
check_dtype_backend(dtype_backend)
|
||||
|
||||
with get_handle(path, "rb", is_text=False) as handles:
|
||||
source = handles.handle
|
||||
if is_fsspec_url(path) and filesystem is None:
|
||||
pa = import_optional_dependency("pyarrow")
|
||||
pa_fs = import_optional_dependency("pyarrow.fs")
|
||||
try:
|
||||
filesystem, source = pa_fs.FileSystem.from_uri(path)
|
||||
except (TypeError, pa.ArrowInvalid):
|
||||
pass
|
||||
|
||||
pa_table = orc.read_table(
|
||||
source=source, columns=columns, filesystem=filesystem, **kwargs
|
||||
)
|
||||
if dtype_backend is not lib.no_default:
|
||||
if dtype_backend == "pyarrow":
|
||||
df = pa_table.to_pandas(types_mapper=pd.ArrowDtype)
|
||||
else:
|
||||
from pandas.io._util import _arrow_dtype_mapping
|
||||
|
||||
mapping = _arrow_dtype_mapping()
|
||||
df = pa_table.to_pandas(types_mapper=mapping.get)
|
||||
return df
|
||||
else:
|
||||
if using_pyarrow_string_dtype():
|
||||
types_mapper = arrow_string_types_mapper()
|
||||
else:
|
||||
types_mapper = None
|
||||
return pa_table.to_pandas(types_mapper=types_mapper)
|
||||
|
||||
|
||||
def to_orc(
|
||||
df: DataFrame,
|
||||
path: FilePath | WriteBuffer[bytes] | None = None,
|
||||
*,
|
||||
engine: Literal["pyarrow"] = "pyarrow",
|
||||
index: bool | None = None,
|
||||
engine_kwargs: dict[str, Any] | None = None,
|
||||
) -> bytes | None:
|
||||
"""
|
||||
Write a DataFrame to the ORC format.
|
||||
|
||||
.. versionadded:: 1.5.0
|
||||
|
||||
Parameters
|
||||
----------
|
||||
df : DataFrame
|
||||
The dataframe to be written to ORC. Raises NotImplementedError
|
||||
if dtype of one or more columns is category, unsigned integers,
|
||||
intervals, periods or sparse.
|
||||
path : str, file-like object or None, default None
|
||||
If a string, it will be used as Root Directory path
|
||||
when writing a partitioned dataset. By file-like object,
|
||||
we refer to objects with a write() method, such as a file handle
|
||||
(e.g. via builtin open function). If path is None,
|
||||
a bytes object is returned.
|
||||
engine : str, default 'pyarrow'
|
||||
ORC library to use.
|
||||
index : bool, optional
|
||||
If ``True``, include the dataframe's index(es) in the file output. If
|
||||
``False``, they will not be written to the file.
|
||||
If ``None``, similar to ``infer`` the dataframe's index(es)
|
||||
will be saved. However, instead of being saved as values,
|
||||
the RangeIndex will be stored as a range in the metadata so it
|
||||
doesn't require much space and is faster. Other indexes will
|
||||
be included as columns in the file output.
|
||||
engine_kwargs : dict[str, Any] or None, default None
|
||||
Additional keyword arguments passed to :func:`pyarrow.orc.write_table`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bytes if no path argument is provided else None
|
||||
|
||||
Raises
|
||||
------
|
||||
NotImplementedError
|
||||
Dtype of one or more columns is category, unsigned integers, interval,
|
||||
period or sparse.
|
||||
ValueError
|
||||
engine is not pyarrow.
|
||||
|
||||
Notes
|
||||
-----
|
||||
* Before using this function you should read the
|
||||
:ref:`user guide about ORC <io.orc>` and
|
||||
:ref:`install optional dependencies <install.warn_orc>`.
|
||||
* This function requires `pyarrow <https://arrow.apache.org/docs/python/>`_
|
||||
library.
|
||||
* For supported dtypes please refer to `supported ORC features in Arrow
|
||||
<https://arrow.apache.org/docs/cpp/orc.html#data-types>`__.
|
||||
* Currently timezones in datetime columns are not preserved when a
|
||||
dataframe is converted into ORC files.
|
||||
"""
|
||||
if index is None:
|
||||
index = df.index.names[0] is not None
|
||||
if engine_kwargs is None:
|
||||
engine_kwargs = {}
|
||||
|
||||
# validate index
|
||||
# --------------
|
||||
|
||||
# validate that we have only a default index
|
||||
# raise on anything else as we don't serialize the index
|
||||
|
||||
if not df.index.equals(default_index(len(df))):
|
||||
raise ValueError(
|
||||
"orc does not support serializing a non-default index for the index; "
|
||||
"you can .reset_index() to make the index into column(s)"
|
||||
)
|
||||
|
||||
if df.index.name is not None:
|
||||
raise ValueError("orc does not serialize index meta-data on a default index")
|
||||
|
||||
if engine != "pyarrow":
|
||||
raise ValueError("engine must be 'pyarrow'")
|
||||
engine = import_optional_dependency(engine, min_version="10.0.1")
|
||||
pa = import_optional_dependency("pyarrow")
|
||||
orc = import_optional_dependency("pyarrow.orc")
|
||||
|
||||
was_none = path is None
|
||||
if was_none:
|
||||
path = io.BytesIO()
|
||||
assert path is not None # For mypy
|
||||
with get_handle(path, "wb", is_text=False) as handles:
|
||||
assert isinstance(engine, ModuleType) # For mypy
|
||||
try:
|
||||
orc.write_table(
|
||||
engine.Table.from_pandas(df, preserve_index=index),
|
||||
handles.handle,
|
||||
**engine_kwargs,
|
||||
)
|
||||
except (TypeError, pa.ArrowNotImplementedError) as e:
|
||||
raise NotImplementedError(
|
||||
"The dtype of one or more columns is not supported yet."
|
||||
) from e
|
||||
|
||||
if was_none:
|
||||
assert isinstance(path, io.BytesIO) # For mypy
|
||||
return path.getvalue()
|
||||
return None
|
676
venv/lib/python3.12/site-packages/pandas/io/parquet.py
Normal file
676
venv/lib/python3.12/site-packages/pandas/io/parquet.py
Normal file
@ -0,0 +1,676 @@
|
||||
""" parquet compat """
|
||||
from __future__ import annotations
|
||||
|
||||
import io
|
||||
import json
|
||||
import os
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Literal,
|
||||
)
|
||||
import warnings
|
||||
from warnings import catch_warnings
|
||||
|
||||
from pandas._config import using_pyarrow_string_dtype
|
||||
from pandas._config.config import _get_option
|
||||
|
||||
from pandas._libs import lib
|
||||
from pandas.compat._optional import import_optional_dependency
|
||||
from pandas.errors import AbstractMethodError
|
||||
from pandas.util._decorators import doc
|
||||
from pandas.util._exceptions import find_stack_level
|
||||
from pandas.util._validators import check_dtype_backend
|
||||
|
||||
import pandas as pd
|
||||
from pandas import (
|
||||
DataFrame,
|
||||
get_option,
|
||||
)
|
||||
from pandas.core.shared_docs import _shared_docs
|
||||
|
||||
from pandas.io._util import arrow_string_types_mapper
|
||||
from pandas.io.common import (
|
||||
IOHandles,
|
||||
get_handle,
|
||||
is_fsspec_url,
|
||||
is_url,
|
||||
stringify_path,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pandas._typing import (
|
||||
DtypeBackend,
|
||||
FilePath,
|
||||
ReadBuffer,
|
||||
StorageOptions,
|
||||
WriteBuffer,
|
||||
)
|
||||
|
||||
|
||||
def get_engine(engine: str) -> BaseImpl:
|
||||
"""return our implementation"""
|
||||
if engine == "auto":
|
||||
engine = get_option("io.parquet.engine")
|
||||
|
||||
if engine == "auto":
|
||||
# try engines in this order
|
||||
engine_classes = [PyArrowImpl, FastParquetImpl]
|
||||
|
||||
error_msgs = ""
|
||||
for engine_class in engine_classes:
|
||||
try:
|
||||
return engine_class()
|
||||
except ImportError as err:
|
||||
error_msgs += "\n - " + str(err)
|
||||
|
||||
raise ImportError(
|
||||
"Unable to find a usable engine; "
|
||||
"tried using: 'pyarrow', 'fastparquet'.\n"
|
||||
"A suitable version of "
|
||||
"pyarrow or fastparquet is required for parquet "
|
||||
"support.\n"
|
||||
"Trying to import the above resulted in these errors:"
|
||||
f"{error_msgs}"
|
||||
)
|
||||
|
||||
if engine == "pyarrow":
|
||||
return PyArrowImpl()
|
||||
elif engine == "fastparquet":
|
||||
return FastParquetImpl()
|
||||
|
||||
raise ValueError("engine must be one of 'pyarrow', 'fastparquet'")
|
||||
|
||||
|
||||
def _get_path_or_handle(
|
||||
path: FilePath | ReadBuffer[bytes] | WriteBuffer[bytes],
|
||||
fs: Any,
|
||||
storage_options: StorageOptions | None = None,
|
||||
mode: str = "rb",
|
||||
is_dir: bool = False,
|
||||
) -> tuple[
|
||||
FilePath | ReadBuffer[bytes] | WriteBuffer[bytes], IOHandles[bytes] | None, Any
|
||||
]:
|
||||
"""File handling for PyArrow."""
|
||||
path_or_handle = stringify_path(path)
|
||||
if fs is not None:
|
||||
pa_fs = import_optional_dependency("pyarrow.fs", errors="ignore")
|
||||
fsspec = import_optional_dependency("fsspec", errors="ignore")
|
||||
if pa_fs is not None and isinstance(fs, pa_fs.FileSystem):
|
||||
if storage_options:
|
||||
raise NotImplementedError(
|
||||
"storage_options not supported with a pyarrow FileSystem."
|
||||
)
|
||||
elif fsspec is not None and isinstance(fs, fsspec.spec.AbstractFileSystem):
|
||||
pass
|
||||
else:
|
||||
raise ValueError(
|
||||
f"filesystem must be a pyarrow or fsspec FileSystem, "
|
||||
f"not a {type(fs).__name__}"
|
||||
)
|
||||
if is_fsspec_url(path_or_handle) and fs is None:
|
||||
if storage_options is None:
|
||||
pa = import_optional_dependency("pyarrow")
|
||||
pa_fs = import_optional_dependency("pyarrow.fs")
|
||||
|
||||
try:
|
||||
fs, path_or_handle = pa_fs.FileSystem.from_uri(path)
|
||||
except (TypeError, pa.ArrowInvalid):
|
||||
pass
|
||||
if fs is None:
|
||||
fsspec = import_optional_dependency("fsspec")
|
||||
fs, path_or_handle = fsspec.core.url_to_fs(
|
||||
path_or_handle, **(storage_options or {})
|
||||
)
|
||||
elif storage_options and (not is_url(path_or_handle) or mode != "rb"):
|
||||
# can't write to a remote url
|
||||
# without making use of fsspec at the moment
|
||||
raise ValueError("storage_options passed with buffer, or non-supported URL")
|
||||
|
||||
handles = None
|
||||
if (
|
||||
not fs
|
||||
and not is_dir
|
||||
and isinstance(path_or_handle, str)
|
||||
and not os.path.isdir(path_or_handle)
|
||||
):
|
||||
# use get_handle only when we are very certain that it is not a directory
|
||||
# fsspec resources can also point to directories
|
||||
# this branch is used for example when reading from non-fsspec URLs
|
||||
handles = get_handle(
|
||||
path_or_handle, mode, is_text=False, storage_options=storage_options
|
||||
)
|
||||
fs = None
|
||||
path_or_handle = handles.handle
|
||||
return path_or_handle, handles, fs
|
||||
|
||||
|
||||
class BaseImpl:
|
||||
@staticmethod
|
||||
def validate_dataframe(df: DataFrame) -> None:
|
||||
if not isinstance(df, DataFrame):
|
||||
raise ValueError("to_parquet only supports IO with DataFrames")
|
||||
|
||||
def write(self, df: DataFrame, path, compression, **kwargs):
|
||||
raise AbstractMethodError(self)
|
||||
|
||||
def read(self, path, columns=None, **kwargs) -> DataFrame:
|
||||
raise AbstractMethodError(self)
|
||||
|
||||
|
||||
class PyArrowImpl(BaseImpl):
|
||||
def __init__(self) -> None:
|
||||
import_optional_dependency(
|
||||
"pyarrow", extra="pyarrow is required for parquet support."
|
||||
)
|
||||
import pyarrow.parquet
|
||||
|
||||
# import utils to register the pyarrow extension types
|
||||
import pandas.core.arrays.arrow.extension_types # pyright: ignore[reportUnusedImport] # noqa: F401
|
||||
|
||||
self.api = pyarrow
|
||||
|
||||
def write(
|
||||
self,
|
||||
df: DataFrame,
|
||||
path: FilePath | WriteBuffer[bytes],
|
||||
compression: str | None = "snappy",
|
||||
index: bool | None = None,
|
||||
storage_options: StorageOptions | None = None,
|
||||
partition_cols: list[str] | None = None,
|
||||
filesystem=None,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
self.validate_dataframe(df)
|
||||
|
||||
from_pandas_kwargs: dict[str, Any] = {"schema": kwargs.pop("schema", None)}
|
||||
if index is not None:
|
||||
from_pandas_kwargs["preserve_index"] = index
|
||||
|
||||
table = self.api.Table.from_pandas(df, **from_pandas_kwargs)
|
||||
|
||||
if df.attrs:
|
||||
df_metadata = {"PANDAS_ATTRS": json.dumps(df.attrs)}
|
||||
existing_metadata = table.schema.metadata
|
||||
merged_metadata = {**existing_metadata, **df_metadata}
|
||||
table = table.replace_schema_metadata(merged_metadata)
|
||||
|
||||
path_or_handle, handles, filesystem = _get_path_or_handle(
|
||||
path,
|
||||
filesystem,
|
||||
storage_options=storage_options,
|
||||
mode="wb",
|
||||
is_dir=partition_cols is not None,
|
||||
)
|
||||
if (
|
||||
isinstance(path_or_handle, io.BufferedWriter)
|
||||
and hasattr(path_or_handle, "name")
|
||||
and isinstance(path_or_handle.name, (str, bytes))
|
||||
):
|
||||
if isinstance(path_or_handle.name, bytes):
|
||||
path_or_handle = path_or_handle.name.decode()
|
||||
else:
|
||||
path_or_handle = path_or_handle.name
|
||||
|
||||
try:
|
||||
if partition_cols is not None:
|
||||
# writes to multiple files under the given path
|
||||
self.api.parquet.write_to_dataset(
|
||||
table,
|
||||
path_or_handle,
|
||||
compression=compression,
|
||||
partition_cols=partition_cols,
|
||||
filesystem=filesystem,
|
||||
**kwargs,
|
||||
)
|
||||
else:
|
||||
# write to single output file
|
||||
self.api.parquet.write_table(
|
||||
table,
|
||||
path_or_handle,
|
||||
compression=compression,
|
||||
filesystem=filesystem,
|
||||
**kwargs,
|
||||
)
|
||||
finally:
|
||||
if handles is not None:
|
||||
handles.close()
|
||||
|
||||
def read(
|
||||
self,
|
||||
path,
|
||||
columns=None,
|
||||
filters=None,
|
||||
use_nullable_dtypes: bool = False,
|
||||
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
|
||||
storage_options: StorageOptions | None = None,
|
||||
filesystem=None,
|
||||
**kwargs,
|
||||
) -> DataFrame:
|
||||
kwargs["use_pandas_metadata"] = True
|
||||
|
||||
to_pandas_kwargs = {}
|
||||
if dtype_backend == "numpy_nullable":
|
||||
from pandas.io._util import _arrow_dtype_mapping
|
||||
|
||||
mapping = _arrow_dtype_mapping()
|
||||
to_pandas_kwargs["types_mapper"] = mapping.get
|
||||
elif dtype_backend == "pyarrow":
|
||||
to_pandas_kwargs["types_mapper"] = pd.ArrowDtype # type: ignore[assignment]
|
||||
elif using_pyarrow_string_dtype():
|
||||
to_pandas_kwargs["types_mapper"] = arrow_string_types_mapper()
|
||||
|
||||
manager = _get_option("mode.data_manager", silent=True)
|
||||
if manager == "array":
|
||||
to_pandas_kwargs["split_blocks"] = True # type: ignore[assignment]
|
||||
|
||||
path_or_handle, handles, filesystem = _get_path_or_handle(
|
||||
path,
|
||||
filesystem,
|
||||
storage_options=storage_options,
|
||||
mode="rb",
|
||||
)
|
||||
try:
|
||||
pa_table = self.api.parquet.read_table(
|
||||
path_or_handle,
|
||||
columns=columns,
|
||||
filesystem=filesystem,
|
||||
filters=filters,
|
||||
**kwargs,
|
||||
)
|
||||
result = pa_table.to_pandas(**to_pandas_kwargs)
|
||||
|
||||
if manager == "array":
|
||||
result = result._as_manager("array", copy=False)
|
||||
|
||||
if pa_table.schema.metadata:
|
||||
if b"PANDAS_ATTRS" in pa_table.schema.metadata:
|
||||
df_metadata = pa_table.schema.metadata[b"PANDAS_ATTRS"]
|
||||
result.attrs = json.loads(df_metadata)
|
||||
return result
|
||||
finally:
|
||||
if handles is not None:
|
||||
handles.close()
|
||||
|
||||
|
||||
class FastParquetImpl(BaseImpl):
|
||||
def __init__(self) -> None:
|
||||
# since pandas is a dependency of fastparquet
|
||||
# we need to import on first use
|
||||
fastparquet = import_optional_dependency(
|
||||
"fastparquet", extra="fastparquet is required for parquet support."
|
||||
)
|
||||
self.api = fastparquet
|
||||
|
||||
def write(
|
||||
self,
|
||||
df: DataFrame,
|
||||
path,
|
||||
compression: Literal["snappy", "gzip", "brotli"] | None = "snappy",
|
||||
index=None,
|
||||
partition_cols=None,
|
||||
storage_options: StorageOptions | None = None,
|
||||
filesystem=None,
|
||||
**kwargs,
|
||||
) -> None:
|
||||
self.validate_dataframe(df)
|
||||
|
||||
if "partition_on" in kwargs and partition_cols is not None:
|
||||
raise ValueError(
|
||||
"Cannot use both partition_on and "
|
||||
"partition_cols. Use partition_cols for partitioning data"
|
||||
)
|
||||
if "partition_on" in kwargs:
|
||||
partition_cols = kwargs.pop("partition_on")
|
||||
|
||||
if partition_cols is not None:
|
||||
kwargs["file_scheme"] = "hive"
|
||||
|
||||
if filesystem is not None:
|
||||
raise NotImplementedError(
|
||||
"filesystem is not implemented for the fastparquet engine."
|
||||
)
|
||||
|
||||
# cannot use get_handle as write() does not accept file buffers
|
||||
path = stringify_path(path)
|
||||
if is_fsspec_url(path):
|
||||
fsspec = import_optional_dependency("fsspec")
|
||||
|
||||
# if filesystem is provided by fsspec, file must be opened in 'wb' mode.
|
||||
kwargs["open_with"] = lambda path, _: fsspec.open(
|
||||
path, "wb", **(storage_options or {})
|
||||
).open()
|
||||
elif storage_options:
|
||||
raise ValueError(
|
||||
"storage_options passed with file object or non-fsspec file path"
|
||||
)
|
||||
|
||||
with catch_warnings(record=True):
|
||||
self.api.write(
|
||||
path,
|
||||
df,
|
||||
compression=compression,
|
||||
write_index=index,
|
||||
partition_on=partition_cols,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def read(
|
||||
self,
|
||||
path,
|
||||
columns=None,
|
||||
filters=None,
|
||||
storage_options: StorageOptions | None = None,
|
||||
filesystem=None,
|
||||
**kwargs,
|
||||
) -> DataFrame:
|
||||
parquet_kwargs: dict[str, Any] = {}
|
||||
use_nullable_dtypes = kwargs.pop("use_nullable_dtypes", False)
|
||||
dtype_backend = kwargs.pop("dtype_backend", lib.no_default)
|
||||
# We are disabling nullable dtypes for fastparquet pending discussion
|
||||
parquet_kwargs["pandas_nulls"] = False
|
||||
if use_nullable_dtypes:
|
||||
raise ValueError(
|
||||
"The 'use_nullable_dtypes' argument is not supported for the "
|
||||
"fastparquet engine"
|
||||
)
|
||||
if dtype_backend is not lib.no_default:
|
||||
raise ValueError(
|
||||
"The 'dtype_backend' argument is not supported for the "
|
||||
"fastparquet engine"
|
||||
)
|
||||
if filesystem is not None:
|
||||
raise NotImplementedError(
|
||||
"filesystem is not implemented for the fastparquet engine."
|
||||
)
|
||||
path = stringify_path(path)
|
||||
handles = None
|
||||
if is_fsspec_url(path):
|
||||
fsspec = import_optional_dependency("fsspec")
|
||||
|
||||
parquet_kwargs["fs"] = fsspec.open(path, "rb", **(storage_options or {})).fs
|
||||
elif isinstance(path, str) and not os.path.isdir(path):
|
||||
# use get_handle only when we are very certain that it is not a directory
|
||||
# fsspec resources can also point to directories
|
||||
# this branch is used for example when reading from non-fsspec URLs
|
||||
handles = get_handle(
|
||||
path, "rb", is_text=False, storage_options=storage_options
|
||||
)
|
||||
path = handles.handle
|
||||
|
||||
try:
|
||||
parquet_file = self.api.ParquetFile(path, **parquet_kwargs)
|
||||
return parquet_file.to_pandas(columns=columns, filters=filters, **kwargs)
|
||||
finally:
|
||||
if handles is not None:
|
||||
handles.close()
|
||||
|
||||
|
||||
@doc(storage_options=_shared_docs["storage_options"])
|
||||
def to_parquet(
|
||||
df: DataFrame,
|
||||
path: FilePath | WriteBuffer[bytes] | None = None,
|
||||
engine: str = "auto",
|
||||
compression: str | None = "snappy",
|
||||
index: bool | None = None,
|
||||
storage_options: StorageOptions | None = None,
|
||||
partition_cols: list[str] | None = None,
|
||||
filesystem: Any = None,
|
||||
**kwargs,
|
||||
) -> bytes | None:
|
||||
"""
|
||||
Write a DataFrame to the parquet format.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
df : DataFrame
|
||||
path : str, path object, file-like object, or None, default None
|
||||
String, path object (implementing ``os.PathLike[str]``), or file-like
|
||||
object implementing a binary ``write()`` function. If None, the result is
|
||||
returned as bytes. If a string, it will be used as Root Directory path
|
||||
when writing a partitioned dataset. The engine fastparquet does not
|
||||
accept file-like objects.
|
||||
engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'
|
||||
Parquet library to use. If 'auto', then the option
|
||||
``io.parquet.engine`` is used. The default ``io.parquet.engine``
|
||||
behavior is to try 'pyarrow', falling back to 'fastparquet' if
|
||||
'pyarrow' is unavailable.
|
||||
|
||||
When using the ``'pyarrow'`` engine and no storage options are provided
|
||||
and a filesystem is implemented by both ``pyarrow.fs`` and ``fsspec``
|
||||
(e.g. "s3://"), then the ``pyarrow.fs`` filesystem is attempted first.
|
||||
Use the filesystem keyword with an instantiated fsspec filesystem
|
||||
if you wish to use its implementation.
|
||||
compression : {{'snappy', 'gzip', 'brotli', 'lz4', 'zstd', None}},
|
||||
default 'snappy'. Name of the compression to use. Use ``None``
|
||||
for no compression.
|
||||
index : bool, default None
|
||||
If ``True``, include the dataframe's index(es) in the file output. If
|
||||
``False``, they will not be written to the file.
|
||||
If ``None``, similar to ``True`` the dataframe's index(es)
|
||||
will be saved. However, instead of being saved as values,
|
||||
the RangeIndex will be stored as a range in the metadata so it
|
||||
doesn't require much space and is faster. Other indexes will
|
||||
be included as columns in the file output.
|
||||
partition_cols : str or list, optional, default None
|
||||
Column names by which to partition the dataset.
|
||||
Columns are partitioned in the order they are given.
|
||||
Must be None if path is not a string.
|
||||
{storage_options}
|
||||
|
||||
filesystem : fsspec or pyarrow filesystem, default None
|
||||
Filesystem object to use when reading the parquet file. Only implemented
|
||||
for ``engine="pyarrow"``.
|
||||
|
||||
.. versionadded:: 2.1.0
|
||||
|
||||
kwargs
|
||||
Additional keyword arguments passed to the engine
|
||||
|
||||
Returns
|
||||
-------
|
||||
bytes if no path argument is provided else None
|
||||
"""
|
||||
if isinstance(partition_cols, str):
|
||||
partition_cols = [partition_cols]
|
||||
impl = get_engine(engine)
|
||||
|
||||
path_or_buf: FilePath | WriteBuffer[bytes] = io.BytesIO() if path is None else path
|
||||
|
||||
impl.write(
|
||||
df,
|
||||
path_or_buf,
|
||||
compression=compression,
|
||||
index=index,
|
||||
partition_cols=partition_cols,
|
||||
storage_options=storage_options,
|
||||
filesystem=filesystem,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
if path is None:
|
||||
assert isinstance(path_or_buf, io.BytesIO)
|
||||
return path_or_buf.getvalue()
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
@doc(storage_options=_shared_docs["storage_options"])
|
||||
def read_parquet(
|
||||
path: FilePath | ReadBuffer[bytes],
|
||||
engine: str = "auto",
|
||||
columns: list[str] | None = None,
|
||||
storage_options: StorageOptions | None = None,
|
||||
use_nullable_dtypes: bool | lib.NoDefault = lib.no_default,
|
||||
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
|
||||
filesystem: Any = None,
|
||||
filters: list[tuple] | list[list[tuple]] | None = None,
|
||||
**kwargs,
|
||||
) -> DataFrame:
|
||||
"""
|
||||
Load a parquet object from the file path, returning a DataFrame.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
path : str, path object or file-like object
|
||||
String, path object (implementing ``os.PathLike[str]``), or file-like
|
||||
object implementing a binary ``read()`` function.
|
||||
The string could be a URL. Valid URL schemes include http, ftp, s3,
|
||||
gs, and file. For file URLs, a host is expected. A local file could be:
|
||||
``file://localhost/path/to/table.parquet``.
|
||||
A file URL can also be a path to a directory that contains multiple
|
||||
partitioned parquet files. Both pyarrow and fastparquet support
|
||||
paths to directories as well as file URLs. A directory path could be:
|
||||
``file://localhost/path/to/tables`` or ``s3://bucket/partition_dir``.
|
||||
engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto'
|
||||
Parquet library to use. If 'auto', then the option
|
||||
``io.parquet.engine`` is used. The default ``io.parquet.engine``
|
||||
behavior is to try 'pyarrow', falling back to 'fastparquet' if
|
||||
'pyarrow' is unavailable.
|
||||
|
||||
When using the ``'pyarrow'`` engine and no storage options are provided
|
||||
and a filesystem is implemented by both ``pyarrow.fs`` and ``fsspec``
|
||||
(e.g. "s3://"), then the ``pyarrow.fs`` filesystem is attempted first.
|
||||
Use the filesystem keyword with an instantiated fsspec filesystem
|
||||
if you wish to use its implementation.
|
||||
columns : list, default=None
|
||||
If not None, only these columns will be read from the file.
|
||||
{storage_options}
|
||||
|
||||
.. versionadded:: 1.3.0
|
||||
|
||||
use_nullable_dtypes : bool, default False
|
||||
If True, use dtypes that use ``pd.NA`` as missing value indicator
|
||||
for the resulting DataFrame. (only applicable for the ``pyarrow``
|
||||
engine)
|
||||
As new dtypes are added that support ``pd.NA`` in the future, the
|
||||
output with this option will change to use those dtypes.
|
||||
Note: this is an experimental option, and behaviour (e.g. additional
|
||||
support dtypes) may change without notice.
|
||||
|
||||
.. deprecated:: 2.0
|
||||
|
||||
dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable'
|
||||
Back-end data type applied to the resultant :class:`DataFrame`
|
||||
(still experimental). Behaviour is as follows:
|
||||
|
||||
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
|
||||
(default).
|
||||
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
|
||||
DataFrame.
|
||||
|
||||
.. versionadded:: 2.0
|
||||
|
||||
filesystem : fsspec or pyarrow filesystem, default None
|
||||
Filesystem object to use when reading the parquet file. Only implemented
|
||||
for ``engine="pyarrow"``.
|
||||
|
||||
.. versionadded:: 2.1.0
|
||||
|
||||
filters : List[Tuple] or List[List[Tuple]], default None
|
||||
To filter out data.
|
||||
Filter syntax: [[(column, op, val), ...],...]
|
||||
where op is [==, =, >, >=, <, <=, !=, in, not in]
|
||||
The innermost tuples are transposed into a set of filters applied
|
||||
through an `AND` operation.
|
||||
The outer list combines these sets of filters through an `OR`
|
||||
operation.
|
||||
A single list of tuples can also be used, meaning that no `OR`
|
||||
operation between set of filters is to be conducted.
|
||||
|
||||
Using this argument will NOT result in row-wise filtering of the final
|
||||
partitions unless ``engine="pyarrow"`` is also specified. For
|
||||
other engines, filtering is only performed at the partition level, that is,
|
||||
to prevent the loading of some row-groups and/or files.
|
||||
|
||||
.. versionadded:: 2.1.0
|
||||
|
||||
**kwargs
|
||||
Any additional kwargs are passed to the engine.
|
||||
|
||||
Returns
|
||||
-------
|
||||
DataFrame
|
||||
|
||||
See Also
|
||||
--------
|
||||
DataFrame.to_parquet : Create a parquet object that serializes a DataFrame.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> original_df = pd.DataFrame(
|
||||
... {{"foo": range(5), "bar": range(5, 10)}}
|
||||
... )
|
||||
>>> original_df
|
||||
foo bar
|
||||
0 0 5
|
||||
1 1 6
|
||||
2 2 7
|
||||
3 3 8
|
||||
4 4 9
|
||||
>>> df_parquet_bytes = original_df.to_parquet()
|
||||
>>> from io import BytesIO
|
||||
>>> restored_df = pd.read_parquet(BytesIO(df_parquet_bytes))
|
||||
>>> restored_df
|
||||
foo bar
|
||||
0 0 5
|
||||
1 1 6
|
||||
2 2 7
|
||||
3 3 8
|
||||
4 4 9
|
||||
>>> restored_df.equals(original_df)
|
||||
True
|
||||
>>> restored_bar = pd.read_parquet(BytesIO(df_parquet_bytes), columns=["bar"])
|
||||
>>> restored_bar
|
||||
bar
|
||||
0 5
|
||||
1 6
|
||||
2 7
|
||||
3 8
|
||||
4 9
|
||||
>>> restored_bar.equals(original_df[['bar']])
|
||||
True
|
||||
|
||||
The function uses `kwargs` that are passed directly to the engine.
|
||||
In the following example, we use the `filters` argument of the pyarrow
|
||||
engine to filter the rows of the DataFrame.
|
||||
|
||||
Since `pyarrow` is the default engine, we can omit the `engine` argument.
|
||||
Note that the `filters` argument is implemented by the `pyarrow` engine,
|
||||
which can benefit from multithreading and also potentially be more
|
||||
economical in terms of memory.
|
||||
|
||||
>>> sel = [("foo", ">", 2)]
|
||||
>>> restored_part = pd.read_parquet(BytesIO(df_parquet_bytes), filters=sel)
|
||||
>>> restored_part
|
||||
foo bar
|
||||
0 3 8
|
||||
1 4 9
|
||||
"""
|
||||
|
||||
impl = get_engine(engine)
|
||||
|
||||
if use_nullable_dtypes is not lib.no_default:
|
||||
msg = (
|
||||
"The argument 'use_nullable_dtypes' is deprecated and will be removed "
|
||||
"in a future version."
|
||||
)
|
||||
if use_nullable_dtypes is True:
|
||||
msg += (
|
||||
"Use dtype_backend='numpy_nullable' instead of use_nullable_dtype=True."
|
||||
)
|
||||
warnings.warn(msg, FutureWarning, stacklevel=find_stack_level())
|
||||
else:
|
||||
use_nullable_dtypes = False
|
||||
check_dtype_backend(dtype_backend)
|
||||
|
||||
return impl.read(
|
||||
path,
|
||||
columns=columns,
|
||||
filters=filters,
|
||||
storage_options=storage_options,
|
||||
use_nullable_dtypes=use_nullable_dtypes,
|
||||
dtype_backend=dtype_backend,
|
||||
filesystem=filesystem,
|
||||
**kwargs,
|
||||
)
|
@ -0,0 +1,9 @@
|
||||
from pandas.io.parsers.readers import (
|
||||
TextFileReader,
|
||||
TextParser,
|
||||
read_csv,
|
||||
read_fwf,
|
||||
read_table,
|
||||
)
|
||||
|
||||
__all__ = ["TextFileReader", "TextParser", "read_csv", "read_fwf", "read_table"]
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -0,0 +1,303 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
import warnings
|
||||
|
||||
from pandas._config import using_pyarrow_string_dtype
|
||||
|
||||
from pandas._libs import lib
|
||||
from pandas.compat._optional import import_optional_dependency
|
||||
from pandas.errors import (
|
||||
ParserError,
|
||||
ParserWarning,
|
||||
)
|
||||
from pandas.util._exceptions import find_stack_level
|
||||
|
||||
from pandas.core.dtypes.common import pandas_dtype
|
||||
from pandas.core.dtypes.inference import is_integer
|
||||
|
||||
import pandas as pd
|
||||
from pandas import DataFrame
|
||||
|
||||
from pandas.io._util import (
|
||||
_arrow_dtype_mapping,
|
||||
arrow_string_types_mapper,
|
||||
)
|
||||
from pandas.io.parsers.base_parser import ParserBase
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pandas._typing import ReadBuffer
|
||||
|
||||
|
||||
class ArrowParserWrapper(ParserBase):
|
||||
"""
|
||||
Wrapper for the pyarrow engine for read_csv()
|
||||
"""
|
||||
|
||||
def __init__(self, src: ReadBuffer[bytes], **kwds) -> None:
|
||||
super().__init__(kwds)
|
||||
self.kwds = kwds
|
||||
self.src = src
|
||||
|
||||
self._parse_kwds()
|
||||
|
||||
def _parse_kwds(self) -> None:
|
||||
"""
|
||||
Validates keywords before passing to pyarrow.
|
||||
"""
|
||||
encoding: str | None = self.kwds.get("encoding")
|
||||
self.encoding = "utf-8" if encoding is None else encoding
|
||||
|
||||
na_values = self.kwds["na_values"]
|
||||
if isinstance(na_values, dict):
|
||||
raise ValueError(
|
||||
"The pyarrow engine doesn't support passing a dict for na_values"
|
||||
)
|
||||
self.na_values = list(self.kwds["na_values"])
|
||||
|
||||
def _get_pyarrow_options(self) -> None:
|
||||
"""
|
||||
Rename some arguments to pass to pyarrow
|
||||
"""
|
||||
mapping = {
|
||||
"usecols": "include_columns",
|
||||
"na_values": "null_values",
|
||||
"escapechar": "escape_char",
|
||||
"skip_blank_lines": "ignore_empty_lines",
|
||||
"decimal": "decimal_point",
|
||||
"quotechar": "quote_char",
|
||||
}
|
||||
for pandas_name, pyarrow_name in mapping.items():
|
||||
if pandas_name in self.kwds and self.kwds.get(pandas_name) is not None:
|
||||
self.kwds[pyarrow_name] = self.kwds.pop(pandas_name)
|
||||
|
||||
# Date format handling
|
||||
# If we get a string, we need to convert it into a list for pyarrow
|
||||
# If we get a dict, we want to parse those separately
|
||||
date_format = self.date_format
|
||||
if isinstance(date_format, str):
|
||||
date_format = [date_format]
|
||||
else:
|
||||
# In case of dict, we don't want to propagate through, so
|
||||
# just set to pyarrow default of None
|
||||
|
||||
# Ideally, in future we disable pyarrow dtype inference (read in as string)
|
||||
# to prevent misreads.
|
||||
date_format = None
|
||||
self.kwds["timestamp_parsers"] = date_format
|
||||
|
||||
self.parse_options = {
|
||||
option_name: option_value
|
||||
for option_name, option_value in self.kwds.items()
|
||||
if option_value is not None
|
||||
and option_name
|
||||
in ("delimiter", "quote_char", "escape_char", "ignore_empty_lines")
|
||||
}
|
||||
|
||||
on_bad_lines = self.kwds.get("on_bad_lines")
|
||||
if on_bad_lines is not None:
|
||||
if callable(on_bad_lines):
|
||||
self.parse_options["invalid_row_handler"] = on_bad_lines
|
||||
elif on_bad_lines == ParserBase.BadLineHandleMethod.ERROR:
|
||||
self.parse_options[
|
||||
"invalid_row_handler"
|
||||
] = None # PyArrow raises an exception by default
|
||||
elif on_bad_lines == ParserBase.BadLineHandleMethod.WARN:
|
||||
|
||||
def handle_warning(invalid_row) -> str:
|
||||
warnings.warn(
|
||||
f"Expected {invalid_row.expected_columns} columns, but found "
|
||||
f"{invalid_row.actual_columns}: {invalid_row.text}",
|
||||
ParserWarning,
|
||||
stacklevel=find_stack_level(),
|
||||
)
|
||||
return "skip"
|
||||
|
||||
self.parse_options["invalid_row_handler"] = handle_warning
|
||||
elif on_bad_lines == ParserBase.BadLineHandleMethod.SKIP:
|
||||
self.parse_options["invalid_row_handler"] = lambda _: "skip"
|
||||
|
||||
self.convert_options = {
|
||||
option_name: option_value
|
||||
for option_name, option_value in self.kwds.items()
|
||||
if option_value is not None
|
||||
and option_name
|
||||
in (
|
||||
"include_columns",
|
||||
"null_values",
|
||||
"true_values",
|
||||
"false_values",
|
||||
"decimal_point",
|
||||
"timestamp_parsers",
|
||||
)
|
||||
}
|
||||
self.convert_options["strings_can_be_null"] = "" in self.kwds["null_values"]
|
||||
# autogenerated column names are prefixed with 'f' in pyarrow.csv
|
||||
if self.header is None and "include_columns" in self.convert_options:
|
||||
self.convert_options["include_columns"] = [
|
||||
f"f{n}" for n in self.convert_options["include_columns"]
|
||||
]
|
||||
|
||||
self.read_options = {
|
||||
"autogenerate_column_names": self.header is None,
|
||||
"skip_rows": self.header
|
||||
if self.header is not None
|
||||
else self.kwds["skiprows"],
|
||||
"encoding": self.encoding,
|
||||
}
|
||||
|
||||
def _finalize_pandas_output(self, frame: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Processes data read in based on kwargs.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
frame: DataFrame
|
||||
The DataFrame to process.
|
||||
|
||||
Returns
|
||||
-------
|
||||
DataFrame
|
||||
The processed DataFrame.
|
||||
"""
|
||||
num_cols = len(frame.columns)
|
||||
multi_index_named = True
|
||||
if self.header is None:
|
||||
if self.names is None:
|
||||
if self.header is None:
|
||||
self.names = range(num_cols)
|
||||
if len(self.names) != num_cols:
|
||||
# usecols is passed through to pyarrow, we only handle index col here
|
||||
# The only way self.names is not the same length as number of cols is
|
||||
# if we have int index_col. We should just pad the names(they will get
|
||||
# removed anyways) to expected length then.
|
||||
self.names = list(range(num_cols - len(self.names))) + self.names
|
||||
multi_index_named = False
|
||||
frame.columns = self.names
|
||||
# we only need the frame not the names
|
||||
_, frame = self._do_date_conversions(frame.columns, frame)
|
||||
if self.index_col is not None:
|
||||
index_to_set = self.index_col.copy()
|
||||
for i, item in enumerate(self.index_col):
|
||||
if is_integer(item):
|
||||
index_to_set[i] = frame.columns[item]
|
||||
# String case
|
||||
elif item not in frame.columns:
|
||||
raise ValueError(f"Index {item} invalid")
|
||||
|
||||
# Process dtype for index_col and drop from dtypes
|
||||
if self.dtype is not None:
|
||||
key, new_dtype = (
|
||||
(item, self.dtype.get(item))
|
||||
if self.dtype.get(item) is not None
|
||||
else (frame.columns[item], self.dtype.get(frame.columns[item]))
|
||||
)
|
||||
if new_dtype is not None:
|
||||
frame[key] = frame[key].astype(new_dtype)
|
||||
del self.dtype[key]
|
||||
|
||||
frame.set_index(index_to_set, drop=True, inplace=True)
|
||||
# Clear names if headerless and no name given
|
||||
if self.header is None and not multi_index_named:
|
||||
frame.index.names = [None] * len(frame.index.names)
|
||||
|
||||
if self.dtype is not None:
|
||||
# Ignore non-existent columns from dtype mapping
|
||||
# like other parsers do
|
||||
if isinstance(self.dtype, dict):
|
||||
self.dtype = {
|
||||
k: pandas_dtype(v)
|
||||
for k, v in self.dtype.items()
|
||||
if k in frame.columns
|
||||
}
|
||||
else:
|
||||
self.dtype = pandas_dtype(self.dtype)
|
||||
try:
|
||||
frame = frame.astype(self.dtype)
|
||||
except TypeError as e:
|
||||
# GH#44901 reraise to keep api consistent
|
||||
raise ValueError(e)
|
||||
return frame
|
||||
|
||||
def _validate_usecols(self, usecols) -> None:
|
||||
if lib.is_list_like(usecols) and not all(isinstance(x, str) for x in usecols):
|
||||
raise ValueError(
|
||||
"The pyarrow engine does not allow 'usecols' to be integer "
|
||||
"column positions. Pass a list of string column names instead."
|
||||
)
|
||||
elif callable(usecols):
|
||||
raise ValueError(
|
||||
"The pyarrow engine does not allow 'usecols' to be a callable."
|
||||
)
|
||||
|
||||
def read(self) -> DataFrame:
|
||||
"""
|
||||
Reads the contents of a CSV file into a DataFrame and
|
||||
processes it according to the kwargs passed in the
|
||||
constructor.
|
||||
|
||||
Returns
|
||||
-------
|
||||
DataFrame
|
||||
The DataFrame created from the CSV file.
|
||||
"""
|
||||
pa = import_optional_dependency("pyarrow")
|
||||
pyarrow_csv = import_optional_dependency("pyarrow.csv")
|
||||
self._get_pyarrow_options()
|
||||
|
||||
try:
|
||||
convert_options = pyarrow_csv.ConvertOptions(**self.convert_options)
|
||||
except TypeError:
|
||||
include = self.convert_options.get("include_columns", None)
|
||||
if include is not None:
|
||||
self._validate_usecols(include)
|
||||
|
||||
nulls = self.convert_options.get("null_values", set())
|
||||
if not lib.is_list_like(nulls) or not all(
|
||||
isinstance(x, str) for x in nulls
|
||||
):
|
||||
raise TypeError(
|
||||
"The 'pyarrow' engine requires all na_values to be strings"
|
||||
)
|
||||
|
||||
raise
|
||||
|
||||
try:
|
||||
table = pyarrow_csv.read_csv(
|
||||
self.src,
|
||||
read_options=pyarrow_csv.ReadOptions(**self.read_options),
|
||||
parse_options=pyarrow_csv.ParseOptions(**self.parse_options),
|
||||
convert_options=convert_options,
|
||||
)
|
||||
except pa.ArrowInvalid as e:
|
||||
raise ParserError(e) from e
|
||||
|
||||
dtype_backend = self.kwds["dtype_backend"]
|
||||
|
||||
# Convert all pa.null() cols -> float64 (non nullable)
|
||||
# else Int64 (nullable case, see below)
|
||||
if dtype_backend is lib.no_default:
|
||||
new_schema = table.schema
|
||||
new_type = pa.float64()
|
||||
for i, arrow_type in enumerate(table.schema.types):
|
||||
if pa.types.is_null(arrow_type):
|
||||
new_schema = new_schema.set(
|
||||
i, new_schema.field(i).with_type(new_type)
|
||||
)
|
||||
|
||||
table = table.cast(new_schema)
|
||||
|
||||
if dtype_backend == "pyarrow":
|
||||
frame = table.to_pandas(types_mapper=pd.ArrowDtype)
|
||||
elif dtype_backend == "numpy_nullable":
|
||||
# Modify the default mapping to also
|
||||
# map null to Int64 (to match other engines)
|
||||
dtype_mapping = _arrow_dtype_mapping()
|
||||
dtype_mapping[pa.null()] = pd.Int64Dtype()
|
||||
frame = table.to_pandas(types_mapper=dtype_mapping.get)
|
||||
elif using_pyarrow_string_dtype():
|
||||
frame = table.to_pandas(types_mapper=arrow_string_types_mapper())
|
||||
|
||||
else:
|
||||
frame = table.to_pandas()
|
||||
return self._finalize_pandas_output(frame)
|
1448
venv/lib/python3.12/site-packages/pandas/io/parsers/base_parser.py
Normal file
1448
venv/lib/python3.12/site-packages/pandas/io/parsers/base_parser.py
Normal file
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user