forked from Alsan/Post_finder
venv
This commit is contained in:
367
venv/lib/python3.12/site-packages/pandas/__init__.py
Normal file
367
venv/lib/python3.12/site-packages/pandas/__init__.py
Normal file
@ -0,0 +1,367 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import warnings
|
||||
|
||||
__docformat__ = "restructuredtext"
|
||||
|
||||
# Let users know if they're missing any of our hard dependencies
|
||||
_hard_dependencies = ("numpy", "pytz", "dateutil")
|
||||
_missing_dependencies = []
|
||||
|
||||
for _dependency in _hard_dependencies:
|
||||
try:
|
||||
__import__(_dependency)
|
||||
except ImportError as _e: # pragma: no cover
|
||||
_missing_dependencies.append(f"{_dependency}: {_e}")
|
||||
|
||||
if _missing_dependencies: # pragma: no cover
|
||||
raise ImportError(
|
||||
"Unable to import required dependencies:\n" + "\n".join(_missing_dependencies)
|
||||
)
|
||||
del _hard_dependencies, _dependency, _missing_dependencies
|
||||
|
||||
try:
|
||||
# numpy compat
|
||||
from pandas.compat import (
|
||||
is_numpy_dev as _is_numpy_dev, # pyright: ignore[reportUnusedImport] # noqa: F401
|
||||
)
|
||||
except ImportError as _err: # pragma: no cover
|
||||
_module = _err.name
|
||||
raise ImportError(
|
||||
f"C extension: {_module} not built. If you want to import "
|
||||
"pandas from the source directory, you may need to run "
|
||||
"'python setup.py build_ext' to build the C extensions first."
|
||||
) from _err
|
||||
|
||||
from pandas._config import (
|
||||
get_option,
|
||||
set_option,
|
||||
reset_option,
|
||||
describe_option,
|
||||
option_context,
|
||||
options,
|
||||
)
|
||||
|
||||
# let init-time option registration happen
|
||||
import pandas.core.config_init # pyright: ignore[reportUnusedImport] # noqa: F401
|
||||
|
||||
from pandas.core.api import (
|
||||
# dtype
|
||||
ArrowDtype,
|
||||
Int8Dtype,
|
||||
Int16Dtype,
|
||||
Int32Dtype,
|
||||
Int64Dtype,
|
||||
UInt8Dtype,
|
||||
UInt16Dtype,
|
||||
UInt32Dtype,
|
||||
UInt64Dtype,
|
||||
Float32Dtype,
|
||||
Float64Dtype,
|
||||
CategoricalDtype,
|
||||
PeriodDtype,
|
||||
IntervalDtype,
|
||||
DatetimeTZDtype,
|
||||
StringDtype,
|
||||
BooleanDtype,
|
||||
# missing
|
||||
NA,
|
||||
isna,
|
||||
isnull,
|
||||
notna,
|
||||
notnull,
|
||||
# indexes
|
||||
Index,
|
||||
CategoricalIndex,
|
||||
RangeIndex,
|
||||
MultiIndex,
|
||||
IntervalIndex,
|
||||
TimedeltaIndex,
|
||||
DatetimeIndex,
|
||||
PeriodIndex,
|
||||
IndexSlice,
|
||||
# tseries
|
||||
NaT,
|
||||
Period,
|
||||
period_range,
|
||||
Timedelta,
|
||||
timedelta_range,
|
||||
Timestamp,
|
||||
date_range,
|
||||
bdate_range,
|
||||
Interval,
|
||||
interval_range,
|
||||
DateOffset,
|
||||
# conversion
|
||||
to_numeric,
|
||||
to_datetime,
|
||||
to_timedelta,
|
||||
# misc
|
||||
Flags,
|
||||
Grouper,
|
||||
factorize,
|
||||
unique,
|
||||
value_counts,
|
||||
NamedAgg,
|
||||
array,
|
||||
Categorical,
|
||||
set_eng_float_format,
|
||||
Series,
|
||||
DataFrame,
|
||||
)
|
||||
|
||||
from pandas.core.dtypes.dtypes import SparseDtype
|
||||
|
||||
from pandas.tseries.api import infer_freq
|
||||
from pandas.tseries import offsets
|
||||
|
||||
from pandas.core.computation.api import eval
|
||||
|
||||
from pandas.core.reshape.api import (
|
||||
concat,
|
||||
lreshape,
|
||||
melt,
|
||||
wide_to_long,
|
||||
merge,
|
||||
merge_asof,
|
||||
merge_ordered,
|
||||
crosstab,
|
||||
pivot,
|
||||
pivot_table,
|
||||
get_dummies,
|
||||
from_dummies,
|
||||
cut,
|
||||
qcut,
|
||||
)
|
||||
|
||||
from pandas import api, arrays, errors, io, plotting, tseries
|
||||
from pandas import testing
|
||||
from pandas.util._print_versions import show_versions
|
||||
|
||||
from pandas.io.api import (
|
||||
# excel
|
||||
ExcelFile,
|
||||
ExcelWriter,
|
||||
read_excel,
|
||||
# parsers
|
||||
read_csv,
|
||||
read_fwf,
|
||||
read_table,
|
||||
# pickle
|
||||
read_pickle,
|
||||
to_pickle,
|
||||
# pytables
|
||||
HDFStore,
|
||||
read_hdf,
|
||||
# sql
|
||||
read_sql,
|
||||
read_sql_query,
|
||||
read_sql_table,
|
||||
# misc
|
||||
read_clipboard,
|
||||
read_parquet,
|
||||
read_orc,
|
||||
read_feather,
|
||||
read_gbq,
|
||||
read_html,
|
||||
read_xml,
|
||||
read_json,
|
||||
read_stata,
|
||||
read_sas,
|
||||
read_spss,
|
||||
)
|
||||
|
||||
from pandas.io.json._normalize import json_normalize
|
||||
|
||||
from pandas.util._tester import test
|
||||
|
||||
# use the closest tagged version if possible
|
||||
_built_with_meson = False
|
||||
try:
|
||||
from pandas._version_meson import ( # pyright: ignore [reportMissingImports]
|
||||
__version__,
|
||||
__git_version__,
|
||||
)
|
||||
|
||||
_built_with_meson = True
|
||||
except ImportError:
|
||||
from pandas._version import get_versions
|
||||
|
||||
v = get_versions()
|
||||
__version__ = v.get("closest-tag", v["version"])
|
||||
__git_version__ = v.get("full-revisionid")
|
||||
del get_versions, v
|
||||
|
||||
# GH#55043 - deprecation of the data_manager option
|
||||
if "PANDAS_DATA_MANAGER" in os.environ:
|
||||
warnings.warn(
|
||||
"The env variable PANDAS_DATA_MANAGER is set. The data_manager option is "
|
||||
"deprecated and will be removed in a future version. Only the BlockManager "
|
||||
"will be available. Unset this environment variable to silence this warning.",
|
||||
FutureWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
del warnings, os
|
||||
|
||||
# module level doc-string
|
||||
__doc__ = """
|
||||
pandas - a powerful data analysis and manipulation library for Python
|
||||
=====================================================================
|
||||
|
||||
**pandas** is a Python package providing fast, flexible, and expressive data
|
||||
structures designed to make working with "relational" or "labeled" data both
|
||||
easy and intuitive. It aims to be the fundamental high-level building block for
|
||||
doing practical, **real world** data analysis in Python. Additionally, it has
|
||||
the broader goal of becoming **the most powerful and flexible open source data
|
||||
analysis / manipulation tool available in any language**. It is already well on
|
||||
its way toward this goal.
|
||||
|
||||
Main Features
|
||||
-------------
|
||||
Here are just a few of the things that pandas does well:
|
||||
|
||||
- Easy handling of missing data in floating point as well as non-floating
|
||||
point data.
|
||||
- Size mutability: columns can be inserted and deleted from DataFrame and
|
||||
higher dimensional objects
|
||||
- Automatic and explicit data alignment: objects can be explicitly aligned
|
||||
to a set of labels, or the user can simply ignore the labels and let
|
||||
`Series`, `DataFrame`, etc. automatically align the data for you in
|
||||
computations.
|
||||
- Powerful, flexible group by functionality to perform split-apply-combine
|
||||
operations on data sets, for both aggregating and transforming data.
|
||||
- Make it easy to convert ragged, differently-indexed data in other Python
|
||||
and NumPy data structures into DataFrame objects.
|
||||
- Intelligent label-based slicing, fancy indexing, and subsetting of large
|
||||
data sets.
|
||||
- Intuitive merging and joining data sets.
|
||||
- Flexible reshaping and pivoting of data sets.
|
||||
- Hierarchical labeling of axes (possible to have multiple labels per tick).
|
||||
- Robust IO tools for loading data from flat files (CSV and delimited),
|
||||
Excel files, databases, and saving/loading data from the ultrafast HDF5
|
||||
format.
|
||||
- Time series-specific functionality: date range generation and frequency
|
||||
conversion, moving window statistics, date shifting and lagging.
|
||||
"""
|
||||
|
||||
# Use __all__ to let type checkers know what is part of the public API.
|
||||
# Pandas is not (yet) a py.typed library: the public API is determined
|
||||
# based on the documentation.
|
||||
__all__ = [
|
||||
"ArrowDtype",
|
||||
"BooleanDtype",
|
||||
"Categorical",
|
||||
"CategoricalDtype",
|
||||
"CategoricalIndex",
|
||||
"DataFrame",
|
||||
"DateOffset",
|
||||
"DatetimeIndex",
|
||||
"DatetimeTZDtype",
|
||||
"ExcelFile",
|
||||
"ExcelWriter",
|
||||
"Flags",
|
||||
"Float32Dtype",
|
||||
"Float64Dtype",
|
||||
"Grouper",
|
||||
"HDFStore",
|
||||
"Index",
|
||||
"IndexSlice",
|
||||
"Int16Dtype",
|
||||
"Int32Dtype",
|
||||
"Int64Dtype",
|
||||
"Int8Dtype",
|
||||
"Interval",
|
||||
"IntervalDtype",
|
||||
"IntervalIndex",
|
||||
"MultiIndex",
|
||||
"NA",
|
||||
"NaT",
|
||||
"NamedAgg",
|
||||
"Period",
|
||||
"PeriodDtype",
|
||||
"PeriodIndex",
|
||||
"RangeIndex",
|
||||
"Series",
|
||||
"SparseDtype",
|
||||
"StringDtype",
|
||||
"Timedelta",
|
||||
"TimedeltaIndex",
|
||||
"Timestamp",
|
||||
"UInt16Dtype",
|
||||
"UInt32Dtype",
|
||||
"UInt64Dtype",
|
||||
"UInt8Dtype",
|
||||
"api",
|
||||
"array",
|
||||
"arrays",
|
||||
"bdate_range",
|
||||
"concat",
|
||||
"crosstab",
|
||||
"cut",
|
||||
"date_range",
|
||||
"describe_option",
|
||||
"errors",
|
||||
"eval",
|
||||
"factorize",
|
||||
"get_dummies",
|
||||
"from_dummies",
|
||||
"get_option",
|
||||
"infer_freq",
|
||||
"interval_range",
|
||||
"io",
|
||||
"isna",
|
||||
"isnull",
|
||||
"json_normalize",
|
||||
"lreshape",
|
||||
"melt",
|
||||
"merge",
|
||||
"merge_asof",
|
||||
"merge_ordered",
|
||||
"notna",
|
||||
"notnull",
|
||||
"offsets",
|
||||
"option_context",
|
||||
"options",
|
||||
"period_range",
|
||||
"pivot",
|
||||
"pivot_table",
|
||||
"plotting",
|
||||
"qcut",
|
||||
"read_clipboard",
|
||||
"read_csv",
|
||||
"read_excel",
|
||||
"read_feather",
|
||||
"read_fwf",
|
||||
"read_gbq",
|
||||
"read_hdf",
|
||||
"read_html",
|
||||
"read_json",
|
||||
"read_orc",
|
||||
"read_parquet",
|
||||
"read_pickle",
|
||||
"read_sas",
|
||||
"read_spss",
|
||||
"read_sql",
|
||||
"read_sql_query",
|
||||
"read_sql_table",
|
||||
"read_stata",
|
||||
"read_table",
|
||||
"read_xml",
|
||||
"reset_option",
|
||||
"set_eng_float_format",
|
||||
"set_option",
|
||||
"show_versions",
|
||||
"test",
|
||||
"testing",
|
||||
"timedelta_range",
|
||||
"to_datetime",
|
||||
"to_numeric",
|
||||
"to_pickle",
|
||||
"to_timedelta",
|
||||
"tseries",
|
||||
"unique",
|
||||
"value_counts",
|
||||
"wide_to_long",
|
||||
]
|
Reference in New Issue
Block a user